CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Michel, J. J.
Right arrow Articles by Xiong, Y.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Michel, J. J.
Right arrow Articles by Xiong, Y.

Cell Growth & Differentiation, Vol 9, Issue 6 435-449, Copyright © 1998 by American Association of Cancer Research


ARTICLES

Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A

JJ Michel and Y Xiong
Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 27599-7295, USA.

The budding yeast gene product, CDC53p, forms E3-like SCF complexes with SKP1 and F-box-containing proteins to mediate the ubiquitin-dependent degradation of G1 cyclins and cyclin-dependent kinase (CDK) inhibitors. Cdc53 represents a multigene family, the human homologues of which, the cullin family, include at least six distinct members. We have found that human cullin 1, but not the other closely related cullins 2, 3, 4A, and 5, selectively interacts with human SKP1. This CUL1-SKP1 interaction is mediated by the NH2-terminal domains of both proteins, and the association appears to be required for the interaction of CUL1 with SKP2, an essential element of the S-phase cyclin A-CDK2 kinase. In an asynchronous population of dividing cells, a minor amount of CUL1 specifically associates with cyclin A but not with other cyclins or CDK inhibitors. The steady-state levels of both CUL1 and SKP1 as well as their association with one another remain relatively constant throughout the cell cycle and in postmitotic cells. Our findings indicate that the SCF pathway, although similarly used by the mammalian cullin 1, is not shared by other cullin members. This implies that most cullins may use a SKP1/F-box-independent pathway to facilitate protein degradation.


This article has been cited by other articles:


Home page
GeneticsHome page
J. Srinivasan, A. R. Dillman, M. G. Macchietto, L. Heikkinen, M. Lakso, K. M. Fracchia, I. Antoshechkin, A. Mortazavi, G. Wong, and P. W. Sternberg
The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle
Genetics, April 1, 2013; 193(4): 1279 - 1295.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
A. E. Davies and K. B. Kaplan
Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites
J. Cell Biol., April 19, 2010; 189(2): 261 - 274.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
N. van Buuren, B. Couturier, Y. Xiong, and M. Barry
Ectromelia Virus Encodes a Novel Family of F-Box Proteins That Interact with the SCF Complex
J. Virol., October 15, 2008; 82(20): 9917 - 9927.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
J. Hu, S. Zacharek, Y. J. He, H. Lee, S. Shumway, R. J. Duronio, and Y. Xiong
WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase
Genes & Dev., April 1, 2008; 22(7): 866 - 871.
[Abstract] [Full Text] [PDF]


Home page
J. Neurosci.Home page
R. F. Nelson, K. A. Glenn, Y. Zhang, H. Wen, T. Knutson, C. M. Gouvion, B. K. Robinson, Z. Zhou, B. Yang, R. J. H. Smith, et al.
Selective Cochlear Degeneration in Mice Lacking the F-Box Protein, Fbx2, a Glycoprotein-Specific Ubiquitin Ligase Subunit
J. Neurosci., May 9, 2007; 27(19): 5163 - 5171.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
Y. J. He, C. M. McCall, J. Hu, Y. Zeng, and Y. Xiong
DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases.
Genes & Dev., November 1, 2006; 20(21): 2949 - 2954.
[Abstract] [Full Text] [PDF]


Home page
Mol Cancer ResHome page
C. Chen, A. K. Seth, and A. E. Aplin
Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human Breast Cancer
Mol. Cancer Res., October 1, 2006; 4(10): 695 - 707.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. F. Nelson, K. A. Glenn, V. M. Miller, H. Wen, and H. L. Paulson
A Novel Route for F-box Protein-mediated Ubiquitination Links CHIP to Glycoprotein Quality Control
J. Biol. Chem., July 21, 2006; 281(29): 20242 - 20251.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. S. Knight, N. Sharma, and E. S. Robertson
Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase
PNAS, December 20, 2005; 102(51): 18562 - 18566.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. S. Knight, N. Sharma, and E. S. Robertson
SCFSkp2 Complex Targeted by Epstein-Barr Virus Essential Nuclear Antigen
Mol. Cell. Biol., March 1, 2005; 25(5): 1749 - 1763.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. Furukawa and Y. Xiong
BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase
Mol. Cell. Biol., January 1, 2005; 25(1): 162 - 171.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
X.-H. Zhu, H. Nguyen, H. D. Halicka, F. Traganos, and A. Koff
Noncatalytic Requirement for Cyclin A-cdk2 in p27 Turnover
Mol. Cell. Biol., July 1, 2004; 24(13): 6058 - 6066.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
L. Pintard, A. Willems, and M. Peter
Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family
EMBO J., April 21, 2004; 23(8): 1681 - 1687.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
S. H. Ali, J. S. Kasper, T. Arai, and J. A. DeCaprio
Cul7/p185/p193 Binding to Simian Virus 40 Large T Antigen Has a Role in Cellular Transformation
J. Virol., March 15, 2004; 78(6): 2749 - 2757.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
J. C. Poe, K. M. Haas, J. Uchida, Y. Lee, M. Fujimoto, and T. F. Tedder
Severely Impaired B Lymphocyte Proliferation, Survival, and Induction of the c-Myc:Cullin 1 Ubiquitin Ligase Pathway Resulting from CD22 Deficiency on the C57BL/6 Genetic Background
J. Immunol., February 15, 2004; 172(4): 2100 - 2110.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Cell Physiol.Home page
C. Van Dort, P. Zhao, K. Parmelee, B. Capps, A. Poel, L. Listenberger, J. Kossoris, B. Wasilevich, D. Murrey, P. Clare, et al.
VACM-1, a cul-5 gene, inhibits cellular growth by a mechanism that involves MAPK and p53 signaling pathways
Am J Physiol Cell Physiol, November 4, 2003; 285(6): C1386 - C1396.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
T. Arai, J. S. Kasper, J. R. Skaar, S. H. Ali, C. Takahashi, and J. A. DeCaprio
Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis
PNAS, August 19, 2003; 100(17): 9855 - 9860.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. J. Michel, J. F. McCarville, and Y. Xiong
A Role for Saccharomyces cerevisiae Cul8 Ubiquitin Ligase in Proper Anaphase Progression
J. Biol. Chem., June 13, 2003; 278(25): 22828 - 22837.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K.-W. Min, J.-W. Hwang, J.-S. Lee, Y. Park, T.-a. Tamura, and J.-B. Yoon
TIP120A Associates with Cullins and Modulates Ubiquitin Ligase Activity
J. Biol. Chem., May 2, 2003; 278(18): 15905 - 15910.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
Y.-W. Zhang, K. Nakayama, K.-I. Nakayama, and I. Morita
A Novel Route for Connexin 43 to Inhibit Cell Proliferation: Negative Regulation of S-Phase Kinase-associated Protein (Skp 2)
Cancer Res., April 1, 2003; 63(7): 1623 - 1630.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
D. C. Dias, G. Dolios, R. Wang, and Z.-Q. Pan
CUL7: A DOC domain-containing cullin selectively binds Skp1*Fbx29 to form an SCF-like complex
PNAS, December 24, 2002; 99(26): 16601 - 16606.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
R. Piva, J. Liu, R. Chiarle, A. Podda, M. Pagano, and G. Inghirami
In Vivo Interference with Skp1 Function Leads to Genetic Instability and Neoplastic Transformation
Mol. Cell. Biol., December 1, 2002; 22(23): 8375 - 8387.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
J. Jiang
Degrading Ci: who is Cul-pable?
Genes & Dev., September 15, 2002; 16(18): 2315 - 2321.
[Full Text] [PDF]


Home page
DevelopmentHome page
S. Doronkin, I. Djagaeva, and S. K. Beckendorf
CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint
Development, January 11, 2002; 129(21): 5053 - 5064.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
E. Querido, P. Blanchette, Q. Yan, T. Kamura, M. Morrison, D. Boivin, W. G. Kaelin, R. C. Conaway, J. W. Conaway, and P. E. Branton
Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex
Genes & Dev., December 1, 2001; 15(23): 3104 - 3117.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. Mongay, S. Plaza, E. Vigorito, C. Serra-Pages, and J. Vives
Association of the Cell Cycle Regulatory Proteins p45SKP2 and CksHs1: FUNCTIONAL EFFECT ON CDK2 COMPLEX FORMATION AND KINASE ACTIVITY
J. Biol. Chem., July 6, 2001; 276(27): 25030 - 25036.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
C. Wirbelauer, H. Sutterluty, M. Blondel, M. Gstaiger, M. Peter, F. Reymond, and W. Krek
The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts
EMBO J., October 16, 2000; 19(20): 5362 - 5375.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. A. Read, J. E. Brownell, T. B. Gladysheva, M. Hottelet, L. A. Parent, M. B. Coggins, J. W. Pierce, V. N. Podust, R.-S. Luo, V. Chau, et al.
Nedd8 Modification of Cul-1 Activates SCFbeta TrCP-Dependent Ubiquitination of Ikappa Balpha
Mol. Cell. Biol., April 1, 2000; 20(7): 2326 - 2333.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
H. L. Ennis, D. N. Dao, S. U. Pukatzki, and R. H. Kessin
Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type
PNAS, March 28, 2000; 97(7): 3292 - 3297.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C. H. Yam, W. Y. Siu, A. Lau, and R. Y. C. Poon
Degradation of Cyclin A Does Not Require Its Phosphorylation by CDC2 and Cyclin-dependent Kinase 2
J. Biol. Chem., February 4, 2000; 275(5): 3158 - 3167.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Hattori, S. Hatakeyama, M. Shirane, M. Matsumoto, and K.-i. Nakayama
Molecular Dissection of the Interactions among I{kappa}B{alpha}, FWD1, and Skp1 Required for Ubiquitin-mediated Proteolysis of I{kappa}B{alpha}
J. Biol. Chem., October 15, 1999; 274(42): 29641 - 29647.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
J. D. Singer, M. Gurian-West, B. Clurman, and J. M. Roberts
Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells
Genes & Dev., September 15, 1999; 13(18): 2375 - 2387.
[Abstract] [Full Text]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. Pause, B. Peterson, G. Schaffar, R. Stearman, and R. D. Klausner
Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein
PNAS, August 17, 1999; 96(17): 9533 - 9538.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
D. Pati, M. L. Meistrich, and S. E. Plon
Human Cdc34 and Rad6B Ubiquitin-Conjugating Enzymes Target Repressors of Cyclic AMP-Induced Transcription for Proteolysis
Mol. Cell. Biol., July 1, 1999; 19(7): 5001 - 5013.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. Hatakeyama, M. Kitagawa, K. Nakayama, M. Shirane, M. Matsumoto, K. Hattori, H. Higashi, H. Nakano, K. Okumura, K. Onoe, et al.
Ubiquitin-dependent degradation of I{kappa}B{alpha} is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1
PNAS, March 30, 1999; 96(7): 3859 - 3863.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Kroll, F. Margottin, A. Kohl, P. Renard, H. Durand, J.-P. Concordet, F. Bachelerie, F. Arenzana-Seisdedos, and R. Benarous
Inducible Degradation of I{kappa}B{alpha} by the Proteasome Requires Interaction with the F-box Protein h-{beta}TrCP
J. Biol. Chem., March 19, 1999; 274(12): 7941 - 7945.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
J. T. Winston, P. Strack, P. Beer-Romero, C. Y. Chu, S. J. Elledge, and J. W. Harper
The SCFbeta -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in Ikappa Balpha and beta -catenin and stimulates Ikappa Balpha ubiquitination in vitro
Genes & Dev., February 1, 1999; 13(3): 270 - 283.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
L. Mongay, S. Plaza, E. Vigorito, C. Serra-Pages, and J. Vives
Association of the Cell Cycle Regulatory Proteins p45SKP2 and CksHs1: FUNCTIONAL EFFECT ON CDK2 COMPLEX FORMATION AND KINASE ACTIVITY
J. Biol. Chem., July 6, 2001; 276(27): 25030 - 25036.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
H. L. Ennis, D. N. Dao, S. U. Pukatzki, and R. H. Kessin
Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type
PNAS, March 21, 2000; (2000) 50005097.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1998 by the American Association of Cancer Research.