HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |
Cell Growth & Differentiation, Vol 9, Issue 3 229-238, Copyright © 1998 by American Association of Cancer Research
ARTICLES |
AE Gorska, H Joseph, R Derynck, HL Moses and R Serra
Department of Cell Biology and The Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA.
Transforming growth factor (TGF)-beta1 and TGF-beta3 are normally expressed at high levels in the mammary gland during quiescence and at all stages of development, except lactation. Exogenously added TGF-beta1, -beta2, and -beta3 have been shown to regulate growth and differentiation of mammary epithelial cells in vitro and in vivo. TGF-betas signal through a heteromeric complex of type I and type II serine/threonine kinases. The type II receptor is necessary for ligand binding and growth suppression by TGF-betas. Deletions of the cytoplasmic domains of several kinase receptors known to function in multimeric complexes have been shown to act as dominant-negative mutations. To evaluate the role of endogenous TGF-betas in the growth and differentiation of the mammary gland in vivo, we have targeted expression of a truncated, kinase-defective TGF-beta type II receptor to mammary epithelial cells in transgenic mice using the mouse mammary tumor virus promoter/enhancer. Transgene expression was localized to the epithelial cells of terminal ducts and alveolar buds. At approximately 20 weeks of age, virgin female transgenic mice demonstrated varying degrees of mammary epithelial hyperplasia. Mammary glands from transgenic, virgin animals exhibited alveolar development and expression of the milk protein, beta-casein. The data suggest that impaired responsiveness in the epithelium to endogenous TGF-betas results in inappropriate alveolar development and differentiation in the mammary gland. We conclude that endogenous TGF-betas signal to the epithelium to maintain quiescence in the mammary glands of virgin animals.
This article has been cited by other articles:
![]() |
![]() |
![]() |
![]() |
![]() ![]() M.-A. SHIBATA, E. SHIBATA, J. MORIMOTO, and Y. KONDO Urethane-induced Mammary Carcinogenesis Susceptibility in Transgenic Mice Expressing a Dominant-negative TGF-{beta} Type II Receptor Anticancer Res, May 1, 2020; 40(5): 2687 - 2694. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Kahata, V. Maturi, and A. Moustakas TGF-{beta} Family Signaling in Ductal Differentiation and Branching Morphogenesis Cold Spring Harb Perspect Biol, March 1, 2018; 10(3): a031997 - a031997. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. Han, A. Diehl, N. K. Nguyen, P. Korangath, W. Teo, S. Cho, S. Kominsky, D. L. Huso, L. Feigenbaum, A. Rein, et al. The Notch Pathway Inhibits TGF{beta} Signaling in Breast Cancer through HEYL-Mediated Crosstalk Cancer Res., November 15, 2014; 74(22): 6509 - 6518. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. S. Jahchan, Y. H. You, W. J. Muller, and K. Luo Transforming Growth Factor-{beta} Regulator SnoN Modulates Mammary Gland Branching Morphogenesis, Postlactational Involution, and Mammary Tumorigenesis Cancer Res., May 15, 2010; 70(10): 4204 - 4213. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. M. Francis, J. Bergsied, C. E. Isaac, C. H. Coschi, A. L. Martens, C. V. Hojilla, S. Chakrabarti, G. E. DiMattia, R. Khoka, J. Y. J. Wang, et al. A Functional Connection between pRB and Transforming Growth Factor {beta} in Growth Inhibition and Mammary Gland Development Mol. Cell. Biol., August 15, 2009; 29(16): 4455 - 4466. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. Labbe, L. Lock, A. Letamendia, A. E. Gorska, R. Gryfe, S. Gallinger, H. L. Moses, and L. Attisano Transcriptional Cooperation between the Transforming Growth Factor-{beta} and Wnt Pathways in Mammary and Intestinal Tumorigenesis Cancer Res., January 1, 2007; 67(1): 75 - 84. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Ge, V. Rajeev, P. Ray, E. Lattime, S. Rittling, S. Medicherla, A. Protter, A. Murphy, J. Chakravarty, S. Dugar, et al. Inhibition of Growth and Metastasis of Mouse Mammary Carcinoma by Selective Inhibitor of Transforming Growth Factor-{beta} Type I Receptor Kinase In vivo. Clin. Cancer Res., July 15, 2006; 12(14): 4315 - 4330. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R Serra and M R Crowley Mouse models of transforming growth factor {beta} impact in breast development and cancer Endocr. Relat. Cancer, December 1, 2005; 12(4): 749 - 760. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. N. Salm, P. E. Burger, S. Coetzee, K. Goto, D. Moscatelli, and E. L. Wilson TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts J. Cell Biol., July 4, 2005; 170(1): 81 - 90. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Zhang, J. Lee, S. Lu, C. A. Pettaway, and Z. Dong Blockade of Transforming Growth Factor-{beta} Signaling Suppresses Progression of Androgen-Independent Human Prostate Cancer in Nude Mice Clin. Cancer Res., June 15, 2005; 11(12): 4512 - 4520. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. Forrester, A. Chytil, B. Bierie, M. Aakre, A. E. Gorska, A.-R. Sharif-Afshar, W. J. Muller, and H. L. Moses Effect of Conditional Knockout of the Type II TGF-{beta} Receptor Gene in Mammary Epithelia on Mammary Gland Development and Polyomavirus Middle T Antigen Induced Tumor Formation and Metastasis Cancer Res., March 15, 2005; 65(6): 2296 - 2302. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. S. Muraoka-Cook, N. Dumont, and C. L. Arteaga Dual Role of Transforming Growth Factor ss in Mammary Tumorigenesis and Metastatic Progression Clin. Cancer Res., January 15, 2005; 11(2): 937s - 943s. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. S. Muraoka-Cook, H. Kurokawa, Y. Koh, J. T. Forbes, L. R. Roebuck, M. H. Barcellos-Hoff, S. E. Moody, L. A. Chodosh, and C. L. Arteaga Conditional Overexpression of Active Transforming Growth Factor {beta}1 In vivo Accelerates Metastases of Transgenic Mammary Tumors Cancer Res., December 15, 2004; 64(24): 9002 - 9011. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. Han, A. J. Demetris, Y. Liu, J. H. Shelhamer, and T. Wu Transforming Growth Factor-{beta} (TGF-{beta}) Activates Cytosolic Phospholipase A2{alpha} (cPLA2{alpha})-mediated Prostaglandin E2 (PGE)2/EP1 and Peroxisome Proliferator-activated Receptor-{gamma} (PPAR-{gamma})/Smad Signaling Pathways in Human Liver Cancer Cells: A NOVEL MECHANISM FOR SUBVERSION OF TGF-{beta}-INDUCED MITOINHIBITION J. Biol. Chem., October 22, 2004; 279(43): 44344 - 44354. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Ueda, S. Wang, N. Dumont, J. Y. Yi, Y. Koh, and C. L. Arteaga Overexpression of HER2 (erbB2) in Human Breast Epithelial Cells Unmasks Transforming Growth Factor {beta}-induced Cell Motility J. Biol. Chem., June 4, 2004; 279(23): 24505 - 24513. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W. Li, W. Qiao, L. Chen, X. Xu, X. Yang, D. Li, C. Li, S. G. Brodie, M. M. Meguid, L. Hennighausen, et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice Development, December 15, 2003; 130(24): 6143 - 6153. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. S. Muraoka, Y. Koh, L. R. Roebuck, M. E. Sanders, D. Brantley-Sieders, A. E. Gorska, H. L. Moses, and C. L. Arteaga Increased Malignancy of Neu-Induced Mammary Tumors Overexpressing Active Transforming Growth Factor {beta}1 Mol. Cell. Biol., December 1, 2003; 23(23): 8691 - 8703. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. M. Siegel, W. Shu, R. D. Cardiff, W. J. Muller, and J. Massague Transforming growth factor {beta} signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis PNAS, July 8, 2003; 100(14): 8430 - 8435. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. S. Jeruss, C. D. Sturgis, A. W. Rademaker, and T. K. Woodruff Down-Regulation of Activin, Activin Receptors, and Smads in High-Grade Breast Cancer Cancer Res., July 1, 2003; 63(13): 3783 - 3790. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. P. Denton, B. Zheng, L. A. Evans, X. Shi-wen, V. H. Ong, I. Fisher, K. Lazaridis, D. J. Abraham, C. M. Black, and B. de Crombrugghe Fibroblast-specific Expression of a Kinase-deficient Type II Transforming Growth Factor {beta} (TGF{beta}) Receptor Leads to Paradoxical Activation of TGF{beta} Signaling Pathways with Fibrosis in Transgenic Mice J. Biol. Chem., June 27, 2003; 278(27): 25109 - 25119. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Guo, P. A. Mathieu, B. Linebaugh, B. F. Sloane, and J. J. Reiners Jr. Phorbol Ester Activation of a Proteolytic Cascade Capable of Activating Latent Transforming Growth Factor-{beta}: A PROCESS INITIATED BY THE EXOCYTOSIS OF CATHEPSIN B J. Biol. Chem., April 26, 2002; 277(17): 14829 - 14837. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y.-a. Yang, B. Tang, G. Robinson, L. Hennighausen, S. G. Brodie, C.-X. Deng, and L. M. Wakefield Smad3 in the Mammary Epithelium Has a Nonredundant Role in the Induction of Apoptosis, but not in the Regulation of Proliferation or Differentiation by Transforming Growth Factor-{beta} Cell Growth Differ., March 1, 2002; 13(3): 123 - 130. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Nguyen and J. Pollard Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution Development, January 7, 2000; 127(14): 3107 - 3118. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. Go, P. Li, and X.-J. Wang Blocking Transforming Growth Factor {beta} Signaling in Transgenic Epidermis Accelerates Chemical Carcinogenesis: A Mechanism Associated with Increased Angiogenesis Cancer Res., June 1, 1999; 59(12): 2861 - 2868. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Kretzschmar, J. Doody, I. Timokhina, and J. Massague A mechanism of repression of TGFbeta / Smad signaling by oncogenic Ras Genes & Dev., April 1, 1999; 13(7): 804 - 816. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. Jiang and E. Zacksenhaus Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma J. Cell Biol., January 7, 2002; 156(1): 185 - 198. [Abstract] [Full Text] [PDF] ![]() |
![]() |
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |