HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |
Cell Growth & Differentiation, Vol 9, Issue 3 197-208, Copyright © 1998 by American Association of Cancer Research
ARTICLES |
CY Peng, PR Graves, S Ogg, RS Thoma, MJ Byrnes 3rd, Z Wu, MT Stephenson and H Piwnica-Worms
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Cdc25C is a dual-specificity protein kinase that controls entry into mitosis by dephosphorylating Cdc2 on both threonine 14 and tyrosine 15. Cdc25C is phosphorylated on serine 216 throughout interphase but not during mitosis. Serine 216 phosphorylation mediates the binding of 14-3-3 protein to Cdc25C, and Cdc25C/14-3-3 complexes are present throughout interphase but not during mitosis. Here we report the cloning of a human kinase denoted C-TAK1 (for Cdc twenty-five C associated protein kinase) that phosphorylates Cdc25C on serine 216 in vitro. C-TAK1 is ubiquitously expressed in human tissues and cell lines and is distinct from the DNA damage checkpoint kinase Chk1, shown previously to phosphorylate Cdc25C on serine 216. Cotransfection of Cdc25C with C-TAK1 resulted in enhanced phosphorylation of Cdc25C on serine 216. In addition, a physical interaction between C-TAK1 and Cdc25C was observed upon transient overexpression in COS-7 cells. Finally, coproduction of Cdc25C and C-TAK1 in bacteria resulted in the stoichiometric phosphorylation of Cdc25C on serine 216 and facilitated 14-3-3 protein binding in vitro. Taken together, these results suggest that one function of C-TAK1 may be to regulate the interactions between Cdc25C and 14-3-3 in vivo by phosphorylating Cdc25C on serine 216.
This article has been cited by other articles:
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Cheong, D. Archambault, R. Degani, E. Iverson, K. D. Tremblay, and J. Mager Nuclear-encoded mitochondrial ribosomal proteins are required to initiate gastrulation Development, May 26, 2020; 147(10): dev188714 - dev188714. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Hart, I. Zulkipli, R. L. Shrestha, D. Dang, D. Conti, I. Kujawiak, and V. Draviam MARK2/Par1b present at retraction fibres corrects spindle off-centering induced by actin disassembly bioRxiv, May 6, 2019; (2019) 508861v1. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M.-J. Sandi, C. B. Marshall, M. Balan, E. Coyaud, M. Zhou, D. M. Monson, N. Ishiyama, A. A. Chandrakumar, J. La Rose, A. L. Couzens, et al. MARK3-mediated phosphorylation of ARHGEF2 couples microtubules to the actin cytoskeleton to establish cell polarity Sci. Signal., October 31, 2017; 10(503): eaan3286 - eaan3286. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Platholi, A. Federman, J. A. Detert, P. Heerdt, and H. C. Hemmings Jr. Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase J. Biol. Chem., August 22, 2014; 289(34): 23893 - 23900. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. T. Lewandowski and H. Piwnica-Worms Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity J. Cell Sci., January 15, 2014; 127(2): 315 - 327. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Timm, J. P. von Kries, X. Li, H. Zempel, E. Mandelkow, and E.-M. Mandelkow Microtubule Affinity Regulating Kinase Activity in Living Neurons Was Examined by a Genetically Encoded Fluorescence Resonance Energy Transfer/Fluorescence Lifetime Imaging-based Biosensor: INHIBITORS WITH THERAPEUTIC POTENTIAL J. Biol. Chem., December 2, 2011; 286(48): 41711 - 41722. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. D. Smith, B. K. Samelson, and J. D. Scott Discovery of cellular substrates for protein kinase A using a peptide array screening protocol Biochem. J., August 15, 2011; 438(1): 103 - 110. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. I. Shapiro, R. Tibes, M. S. Gordon, B. Y. Wong, J. P. Eder, M. J. Borad, D. S. Mendelson, N. J. Vogelzang, B. R. Bastos, G. J. Weiss, et al. Phase I Studies of CBP501, a G2 Checkpoint Abrogator, as Monotherapy and in Combination with Cisplatin in Patients with Advanced Solid Tumors Clin. Cancer Res., May 15, 2011; 17(10): 3431 - 3442. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. S. Banerjee, H.-K. Wang, T. R. Broker, and L. T. Chow Human Papillomavirus (HPV) E7 Induces Prolonged G2 following S Phase Reentry in Differentiated Human Keratinocytes J. Biol. Chem., April 29, 2011; 286(17): 15473 - 15482. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. T. Ma and R. Y. C. Poon How protein kinases co-ordinate mitosis in animal cells Biochem. J., April 1, 2011; 435(1): 17 - 31. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. M. Chan, Y.-W. Ng, and E. Manser A Robust Protocol to Map Binding Sites of the 14-3-3 Interactome: Cdc25C Requires Phosphorylation of Both S216 and S263 to bind 14-3-3 Mol. Cell. Proteomics, March 1, 2011; 10(3): M110.005157 - M110.005157. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. K. Lennerz, J. B. Hurov, L. S. White, K. T. Lewandowski, J. L. Prior, G. J. Planer, R. W. Gereau IV, D. Piwnica-Worms, R. E. Schmidt, and H. Piwnica-Worms Loss of Par-1a/MARK3/C-TAK1 Kinase Leads to Reduced Adiposity, Resistance to Hepatic Steatosis, and Defective Gluconeogenesis Mol. Cell. Biol., November 1, 2010; 30(21): 5043 - 5056. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Kasahara, H. Goto, M. Enomoto, Y. Tomono, T. Kiyono, and M. Inagaki 14-3-3{gamma} mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage EMBO J., August 18, 2010; 29(16): 2802 - 2812. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. B. W. Wertheim, T. W. Yang, T.-c. Pan, A. Ramne, Z. Liu, H. P. Gardner, K. D. Dugan, P. Kristel, B. Kreike, M. J. van de Vijver, et al. The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis PNAS, September 15, 2009; 106(37): 15855 - 15860. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Lu, N. Murata-Kamiya, Y. Saito, and M. Hatakeyama Role of Partitioning-defective 1/Microtubule Affinity-regulating Kinases in the Morphogenetic Activity of Helicobacter pylori CagA J. Biol. Chem., August 21, 2009; 284(34): 23024 - 23036. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. L. Razidlo, H. J. Johnson, S. M. Stoeger, K. H. Cowan, T. Bessho, and R. E. Lewis KSR1 Is Required for Cell Cycle Reinitiation Following DNA Damage J. Biol. Chem., March 13, 2009; 284(11): 6705 - 6715. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. Dutta, P. K. Patel, A. Rosebrock, A. Oliva, J. Leatherwood, and N. Rhind The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription Mol. Cell. Biol., October 1, 2008; 28(19): 5977 - 5985. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. M. Murphy, D. M. Korzhnev, D. F. Ceccarelli, D. J. Briant, A. Zarrine-Afsar, F. Sicheri, L. E. Kay, and T. Pawson Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain PNAS, September 4, 2007; 104(36): 14336 - 14341. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. B. Hurov, M. Huang, L. S. White, J. Lennerz, C. S. Choi, Y.-R. Cho, H.-J. Kim, J. L. Prior, D. Piwnica-Worms, L. C. Cantley, et al. Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate, decreased adiposity, and insulin hypersensitivity in vivo PNAS, March 27, 2007; 104(13): 5680 - 5685. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S.-K. Sha, T. Sato, H. Kobayashi, M. Ishigaki, S. Yamamoto, H. Sato, A. Takada, S. Nakajyo, Y. Mochizuki, J. M. Friedman, et al. Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint Mol. Cancer Ther., January 1, 2007; 6(1): 147 - 153. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P.-O. Angrand, I. Segura, P. Volkel, S. Ghidelli, R. Terry, M. Brajenovic, K. Vintersten, R. Klein, G. Superti-Furga, G. Drewes, et al. Transgenic Mouse Proteomics Identifies New 14-3-3-associated Proteins Involved in Cytoskeletal Rearrangements and Cell Signaling Mol. Cell. Proteomics, December 1, 2006; 5(12): 2211 - 2227. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Dequiedt, M. Martin, J. Von Blume, D. Vertommen, E. Lecomte, N. Mari, M.-F. Heinen, M. Bachmann, J.-C. Twizere, M. C. Huang, et al. New Role for hPar-1 Kinases EMK and C-TAK1 in Regulating Localization and Activity of Class IIa Histone Deacetylases Mol. Cell. Biol., October 1, 2006; 26(19): 7086 - 7102. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() O. Goransson, M. Deak, S. Wullschleger, N. A. Morrice, A. R. Prescott, and D. R. Alessi Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation J. Cell Sci., October 1, 2006; 119(19): 4059 - 4070. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Bronisz, S. M. Sharma, R. Hu, J. Godlewski, G. Tzivion, K. C. Mansky, and M. C. Ostrowski Microphthalmia-associated Transcription Factor Interactions with 14-3-3 Modulate Differentiation of Committed Myeloid Precursors Mol. Biol. Cell, September 1, 2006; 17(9): 3897 - 3906. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. S. Margolis, J. A. Perry, D. H. Weitzel, C. D. Freel, M. Yoshida, T. A. Haystead, and S. Kornbluth A Role for PP1 in the Cdc2/Cyclin B-mediated Positive Feedback Activation of Cdc25 Mol. Biol. Cell, April 1, 2006; 17(4): 1779 - 1789. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Bayraktar, D. Zygmunt, and R. W. Carthew Par-1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo J. Cell Sci., February 8, 2006; 119(4): 711 - 721. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. S. Stanford and J. V. Ruderman Changes in Regulatory Phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during Normal Cell Cycle Progression and Checkpoint Arrests Mol. Biol. Cell, December 1, 2005; 16(12): 5749 - 5760. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Benzinger, N. Muster, H. B. Koch, J. R. Yates III, and H. Hermeking Targeted Proteomic Analysis of 14-3-3{varsigma}, a p53 Effector Commonly Silenced in Cancer Mol. Cell. Proteomics, June 1, 2005; 4(6): 785 - 795. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Bachmann, H. Hennemann, P. X. Xing, I. Hoffmann, and T. Moroy The Oncogenic Serine/Threonine Kinase Pim-1 Phosphorylates and Inhibits the Activity of Cdc25C-associated Kinase 1 (C-TAK1): A NOVEL ROLE FOR Pim-1 AT THE G2/M CELL CYCLE CHECKPOINT J. Biol. Chem., November 12, 2004; 279(46): 48319 - 48328. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Kusakabe and E. Nishida The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC EMBO J., October 27, 2004; 23(21): 4190 - 4201. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Caenepeel, G. Charydczak, S. Sudarsanam, T. Hunter, and G. Manning The mouse kinome: Discovery and comparative genomics of all mouse protein kinases PNAS, August 10, 2004; 101(32): 11707 - 11712. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. E. M. Meek, W. S. Lane, and H. Piwnica-Worms Comprehensive Proteomic Analysis of Interphase and Mitotic 14-3-3-binding Proteins J. Biol. Chem., July 30, 2004; 279(31): 32046 - 32054. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Lu, H. Niida, and M. Nakanishi Human SAD1 Kinase Is Involved in UV-induced DNA Damage Checkpoint Function J. Biol. Chem., July 23, 2004; 279(30): 31164 - 31170. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Uchida, A. Kuma, M. Ohtsubo, M. Shimura, M. Hirata, H. Nakagama, T. Matsunaga, Y. Ishizaka, and K. Yamashita Binding of 14-3-3{beta} but not 14-3-3{sigma} controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B J. Cell Sci., June 15, 2004; 117(14): 3011 - 3020. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. V. Singh, A. Herman-Antosiewicz, A. V. Singh, K. L. Lew, S. K. Srivastava, R. Kamath, K. D. Brown, L. Zhang, and R. Baskaran Sulforaphane-induced G2/M Phase Cell Cycle Arrest Involves Checkpoint Kinase 2-mediated Phosphorylation of Cell Division Cycle 25C J. Biol. Chem., June 11, 2004; 279(24): 25813 - 25822. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. K. Dougherty and D. K. Morrison Unlocking the code of 14-3-3 J. Cell Sci., April 15, 2004; 117(10): 1875 - 1884. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Brajenovic, G. Joberty, B. Küster, T. Bouwmeester, and G. Drewes Comprehensive Proteomic Analysis of Human Par Protein Complexes Reveals an Interconnected Protein Network J. Biol. Chem., March 26, 2004; 279(13): 12804 - 12811. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. M. Lizcano, O. Goransson, R. Toth, M. Deak, N. A. Morrice, J. Boudeau, S. A. Hawley, L. Udd, T. P. Makela, D. G. Hardie, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1 EMBO J., February 25, 2004; 23(4): 833 - 843. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. S. Margolis, S. Walsh, D. C. Weiser, M. Yoshida, S. Shenolikar, and S. Kornbluth PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation EMBO J., November 3, 2003; 22(21): 5734 - 5745. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Muller, D. A. Ritt, T. D. Copeland, and D. K. Morrison Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate EMBO J., September 1, 2003; 22(17): 4431 - 4442. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. P. Ducruet and J. S. Lazo Regulation of Cdc25A Half-life in Interphase by Cyclin-dependent Kinase 2 Activity J. Biol. Chem., August 22, 2003; 278(34): 31838 - 31842. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Donzelli and G. F. Draetta Regulating mammalian checkpoints through Cdc25 inactivation EMBO Rep., July 1, 2003; 4(7): 671 - 677. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Jiang, E. Pereira, M. Maxfield, B. Russell, D. M. Goudelock, and Y. Sanchez Regulation of Chk1 Includes Chromatin Association and 14-3-3 Binding following Phosphorylation on Ser-345 J. Biol. Chem., June 27, 2003; 278(27): 25207 - 25217. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. Okubo, J. M. Lehman, and T. D. Friedrich Negative Regulation of Mitotic Promoting Factor by the Checkpoint Kinase Chk1 in Simian Virus 40 Lytic Infection J. Virol., January 15, 2003; 77(2): 1257 - 1267. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Zhao, J. L. Watkins, and H. Piwnica-Worms Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints PNAS, November 12, 2002; 99(23): 14795 - 14800. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Takemori, Y. Katoh, N. Horike, J. Doi, and M. Okamoto ACTH-induced Nucleocytoplasmic Translocation of Salt-inducible Kinase: IMPLICATION IN THE PROTEIN KINASE A-ACTIVATED GENE TRANSCRIPTION IN MOUSE ADRENOCORTICAL TUMOR CELLS J. Biol. Chem., November 1, 2002; 277(44): 42334 - 42343. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Lim, L. N. Winteringham, J. H. Williams, R. K. McCulloch, E. Ingley, J. Y.-H. Tiao, J.-P. Lalonde, S. Tsai, P. A. Tilbrook, Y. Sun, et al. MADM, a Novel Adaptor Protein That Mediates Phosphorylation of the 14-3-3 Binding Site of Myeloid Leukemia Factor 1 J. Biol. Chem., October 25, 2002; 277(43): 40997 - 41008. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Eastman, E. A. Kohn, M. K. Brown, J. Rathman, M. Livingstone, D. H. Blank, and G. W. Gribble A Novel Indolocarbazole, ICP-1, Abrogates DNA Damage-induced Cell Cycle Arrest and Enhances Cytotoxicity: Similarities and Differences to the Cell Cycle Checkpoint Abrogator UCN-01 Mol. Cancer Ther., October 1, 2002; 1(12): 1067 - 1078. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. A. Kohn, N. D. Ruth, M. K. Brown, M. Livingstone, and A. Eastman Abrogation of the S Phase DNA Damage Checkpoint Results in S Phase Progression or Premature Mitosis Depending on the Concentration of 7-Hydroxystaurosporine and the Kinetics of Cdc25C Activation J. Biol. Chem., July 19, 2002; 277(29): 26553 - 26564. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Shimuta, N. Nakajo, K. Uto, Y. Hayano, K. Okazaki, and N. Sagata Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition EMBO J., July 15, 2002; 21(14): 3694 - 3703. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Toyoshima-Morimoto, E. Taniguchi, and E. Nishida Plk1 promotes nuclear translocation of human Cdc25C during prophase EMBO Rep., April 1, 2002; 3(4): 341 - 348. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Chen, Z. Zhang, J. Bower, Y. Lu, S. S. Leonard, M. Ding, V. Castranova, H. Piwnica-Worms, and X. Shi Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway PNAS, February 19, 2002; 99(4): 1990 - 1995. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. J. Rothblum-Oviatt, C. E. Ryan, and H. Piwnica-Worms 14-3-3 Binding Regulates Catalytic Activity of Human Wee1 Kinase Cell Growth Differ., December 1, 2001; 12(12): 581 - 589. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Wang, J. Li, R. N. Booher, A. Kraker, T. Lawrence, W. R. Leopold, and Y. Sun Radiosensitization of p53 Mutant Cells by PD0166285, a Novel G2 Checkpoint Abrogator Cancer Res., November 1, 2001; 61(22): 8211 - 8217. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. F. Crawford and H. Piwnica-Worms The G2 DNA Damage Checkpoint Delays Expression of Genes Encoding Mitotic Regulators J. Biol. Chem., October 5, 2001; 276(40): 37166 - 37177. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C.-H. Lee and J. H. Chung The hCds1 (Chk2)-FHA Domain Is Essential for a Chain of Phosphorylation Events on hCds1 That Is Induced by Ionizing Radiation J. Biol. Chem., August 10, 2001; 276(32): 30537 - 30541. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Zhao and H. Piwnica-Worms ATR-Mediated Checkpoint Pathways Regulate Phosphorylation and Activation of Human Chk1 Mol. Cell. Biol., July 1, 2001; 21(13): 4129 - 4139. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Dai, C. Yu, V. Singh, L. Tang, Z. Wang, R. McInistry, P. Dent, and S. Grant Pharmacological Inhibitors of the Mitogen-activated Protein Kinase (MAPK) Kinase/MAPK Cascade Interact Synergistically with UCN-01 to Induce Mitochondrial Dysfunction and Apoptosis in Human Leukemia Cells Cancer Res., July 1, 2001; 61(13): 5106 - 5115. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. B. Hurov, T. S. Stappenbeck, C. M. Zmasek, L. S. White, S. H. Ranganath, J. H. Russell, A. C. Chan, K. M. Murphy, and H. Piwnica-Worms Immune System Dysfunction and Autoimmune Disease in Mice Lacking Emk (Par-1) Protein Kinase Mol. Cell. Biol., May 1, 2001; 21(9): 3206 - 3219. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. Rhind and P. Russell Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways J. Cell Sci., November 15, 2000; 113(22): 3889 - 3896. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. M. Raleigh and M. J. O'Connell The G(2) DNA damage checkpoint targets both Wee1 and Cdc25 J. Cell Sci., May 15, 2000; 113(10): 1727 - 1736. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B.-B. S. Zhou, P. Chaturvedi, K. Spring, S. P. Scott, R. A. Johanson, R. Mishra, M. R. Mattern, J. D. Winkler, and K. K. Khanna Caffeine Abolishes the Mammalian G2/M DNA Damage Checkpoint by Inhibiting Ataxia-Telangiectasia-mutated Kinase Activity J. Biol. Chem., April 7, 2000; 275(14): 10342 - 10348. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. C. Busby, D. F. Leistritz, R. T. Abraham, L. M. Karnitz, and J. N. Sarkaria The Radiosensitizing Agent 7-Hydroxystaurosporine (UCN-01) Inhibits the DNA Damage Checkpoint Kinase hChk1 Cancer Res., April 1, 2000; 60(8): 2108 - 2112. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. R. Jackson, A. Gilmartin, C. Imburgia, J. D. Winkler, L. A. Marshall, and A. Roshak An Indolocarbazole Inhibitor of Human Checkpoint Kinase (Chk1) Abrogates Cell Cycle Arrest Caused by DNA Damage Cancer Res., February 1, 2000; 60(3): 566 - 572. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Gardner, G. Belka, G. Wertheim, J. Hartman, S. Ha, P. Gimotty, S. Marquis, and L. Chodosh Developmental role of the SNF1-related kinase Hunk in pregnancy-induced changes in the mammary gland Development, January 10, 2000; 127(20): 4493 - 4509. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Suganuma, T. Kawabe, H. Hori, T. Funabiki, and T. Okamoto Sensitization of Cancer Cells to DNA Damage-induced Cell Death by Specific Cell Cycle G2 Checkpoint Abrogation Cancer Res., December 1, 1999; 59(23): 5887 - 5891. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Zeng and H. Piwnica-Worms DNA Damage and Replication Checkpoints in Fission Yeast Require Nuclear Exclusion of the Cdc25 Phosphatase via 14-3-3 Binding Mol. Cell. Biol., November 1, 1999; 19(11): 7410 - 7419. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W. R. Taylor, S. E. DePrimo, A. Agarwal, M. L. Agarwal, A. H. Schonthal, K. S. Katula, and G. R. Stark Mechanisms of G2 Arrest in Response to Overexpression of p53 Mol. Biol. Cell, November 1, 1999; 10(11): 3607 - 3622. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B. D. Aguda A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system PNAS, September 28, 1999; 96(20): 11352 - 11357. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. W. Kohn Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems Mol. Biol. Cell, August 1, 1999; 10(8): 2703 - 2734. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. N. Dalal, C. M. Schweitzer, J. Gan, and J. A. DeCaprio Cytoplasmic Localization of Human cdc25C during Interphase Requires an Intact 14-3-3 Binding Site Mol. Cell. Biol., June 1, 1999; 19(6): 4465 - 4479. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. L. Brown, C.-H. Lee, J. K. Schwarz, N. Mitiku, H. Piwnica-Worms, and J. H. Chung A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage PNAS, March 30, 1999; 96(7): 3745 - 3750. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. Chen, T.-H. Liu, and N. C. Walworth Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage Genes & Dev., March 15, 1999; 13(6): 675 - 685. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Kumagai, Z. Guo, K. H. Emami, S. X. Wang, and W. G. Dunphy The Xenopus Chk1 Protein Kinase Mediates a Caffeine-sensitive Pathway of Checkpoint Control in Cell-free Extracts J. Cell Biol., September 21, 1998; 142(6): 1559 - 1569. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. A. Thorson, L. W. K. Yu, A. L. Hsu, N.-Y. Shih, P. R. Graves, J. W. Tanner, P. M. Allen, H. Piwnica-Worms, and A. S. Shaw 14-3-3 Proteins Are Required for Maintenance of Raf-1 Phosphorylation and Kinase Activity Mol. Cell. Biol., September 1, 1998; 18(9): 5229 - 5238. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. F. Crawford and H. Piwnica-Worms The G2 DNA Damage Checkpoint Delays Expression of Genes Encoding Mitotic Regulators J. Biol. Chem., October 5, 2001; 276(40): 37166 - 37177. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C.-H. Lee and J. H. Chung The hCds1 (Chk2)-FHA Domain Is Essential for a Chain of Phosphorylation Events on hCds1 That Is Induced by Ionizing Radiation J. Biol. Chem., August 10, 2001; 276(32): 30537 - 30541. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Chen, Z. Zhang, J. Bower, Y. Lu, S. S. Leonard, M. Ding, V. Castranova, H. Piwnica-Worms, and X. Shi Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway PNAS, February 19, 2002; 99(4): 1990 - 1995. [Abstract] [Full Text] [PDF] ![]() |
![]() |
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |