CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Vogt, M.
Right arrow Articles by Haas, M.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Vogt, M.
Right arrow Articles by Haas, M.

Cell Growth & Differentiation, Vol 9, Issue 2 139-146, Copyright © 1998 by American Association of Cancer Research


ARTICLES

Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts

M Vogt, C Haggblom, J Yeargin, T Christiansen-Weber and M Haas
Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186-5800, USA.

In this work, we address the question of whether replicative senescence can be induced in immortal nontumorigenic human fibroblasts. The immortal fibroblasts used in this study were derived from two Li-Fraumeni (LF) patients who carry in their germ line one wild-type and one mutant p53 allele. Both immortal lines have lost the wtp53 allele and express no detectable p16INK4a protein, although they carry the p16INK4a gene. In contrast to immortal human fibroblasts, senescent human fibroblasts have a low content of 5-methyl-cytosine in their DNA. This observation suggested the possibility that a demethylating agent could revert the immortal phenotype and induce replicative senescence in the immortal cell lines. Cells of the two LF lines were exposed to the demethylating agent 5-aza-2'-deoxycytidine. Within 6 days, all cells were growth arrested and showed the enlarged and flat morphology characteristic of senescent cells, an accumulation of lipofuscin granules and senescence-associated beta-galactosidase activity at pH6, both biomarkers for senescence. Immunoblots of 5-aza-2'-deoxycytidine-treated cells showed a greatly increased expression of p16INK4a protein but no detectable change in the expression of p21CIP1, a gene known to be strongly expressed in senescent normal human fibroblasts. In two other experimental series, cells of the two LF lines were infected with retroviral constructs encoding either p16INK4a or p21CIP1. Each of the transduced genes induced senescence without affecting the expression of the other endogenous gene. The results show that induction of senescence in immortal LF fibroblasts can occur by different pathways: (a) by demethylation-dependent pathways that induce the expression of p16INK4a; and (b) by demethylation-independent pathways involving the expression of p21CIP1. The induction of senescence by p16INK4a and p21CIP1 occurred equally in the two human immortal fibroblast lines, which differed in the length of their telomeres and the activity of their telomerase.


This article has been cited by other articles:


Home page
Arterioscler. Thromb. Vasc. Bio.Home page
D.-J. Li, F. Huang, M. Ni, H. Fu, L.-S. Zhang, and F.-M. Shen
{alpha}7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity
Arterioscler Thromb Vasc Biol, August 1, 2016; 36(8): 1566 - 1576.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
F. Anokye-Danso, M. Snitow, and E. E. Morrisey
How microRNAs facilitate reprogramming to pluripotency
J. Cell Sci., September 15, 2012; 125(18): 4179 - 4787.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
W.-Q. Jiang, Z.-H. Zhong, A. Nguyen, J. D. Henson, C. D. Toouli, A. W. Braithwaite, and R. R. Reddel
Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins
J. Cell Biol., June 1, 2009; 185(5): 797 - 810.
[Abstract] [Full Text] [PDF]


Home page
Mol Cancer ResHome page
Q. Li, L. Tang, P. C. Roberts, J. M. Kraniak, A. L. Fridman, O. I. Kulaeva, O. S. Tehrani, and M. A. Tainsky
Interferon Regulatory Factors IRF5 and IRF7 Inhibit Growth and Induce Senescence in Immortal Li-Fraumeni Fibroblasts
Mol. Cancer Res., May 1, 2008; 6(5): 770 - 784.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
T. Davis, S. K. Singhrao, F. S. Wyllie, M. F. Haughton, P. J. Smith, M. Wiltshire, D. Wynford-Thomas, C. J. Jones, R. G. A. Faragher, and D. Kipling
Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms
J. Cell Sci., April 1, 2003; 116(7): 1349 - 1357.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. K. Hasan, T. Yaguchi, T. Sugihara, P. K. R. Kumar, K. Taira, R. R. Reddel, S. C. Kaul, and R. Wadhwa
CARF Is a Novel Protein That Cooperates with Mouse p19ARF (Human p14ARF) in Activating p53
J. Biol. Chem., October 4, 2002; 277(40): 37765 - 37770.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
S. Brookes, J. Rowe, M. Ruas, S. Llanos, P. A. Clark, M. Lomax, M. C. James, R. Vatcheva, S. Bates, K. H. Vousden, et al.
INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence
EMBO J., June 17, 2002; 21(12): 2936 - 2945.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. R. Schwarze, S. E. DePrimo, L. M. Grabert, V. X. Fu, J. D. Brooks, and D. F. Jarrard
Novel Pathways Associated with Bypassing Cellular Senescence in Human Prostate Epithelial Cells
J. Biol. Chem., April 26, 2002; 277(17): 14877 - 14883.
[Abstract] [Full Text] [PDF]


Home page
Cell Growth Differ.Home page
E. C. Goodwin and D. DiMaio
Induced Senescence in HeLa Cervical Carcinoma Cells Containing Elevated Telomerase Activity and Extended Telomeres
Cell Growth Differ., November 1, 2001; 12(11): 525 - 534.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
D. L. Kramer, B.-D. Chang, Y. Chen, P. Diegelman, K. Alm, A. R. Black, I. B. Roninson, and C. W. Porter
Polyamine Depletion in Human Melanoma Cells Leads to G1 Arrest Associated with Induction of p21WAF1/CIP1/SDI1, Changes in the Expression of p21-regulated Genes, and a Senescence-like Phenotype
Cancer Res., November 1, 2001; 61(21): 7754 - 7762.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sugihara, S. C. Kaul, J.-y. Kato, R. R. Reddel, H. Nomura, and R. Wadhwa
Pex19p Dampens the p19ARF-p53-p21WAF1 Tumor Suppressor Pathway*
J. Biol. Chem., June 1, 2001; 276(22): 18649 - 18652.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Collado, R. H. Medema, I. Garcia-Cao, M. L. N. Dubuisson, M. Barradas, J. Glassford, C. Rivas, B. M. T. Burgering, M. Serrano, and E. W.- F. Lam
Inhibition of the Phosphoinositide 3-Kinase Pathway Induces a Senescence-like Arrest Mediated by p27Kip1
J. Biol. Chem., July 21, 2000; 275(29): 21960 - 21968.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
B.-D. Chang, K. Watanabe, E. V. Broude, J. Fang, J. C. Poole, T. V. Kalinichenko, and I. B. Roninson
Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases
PNAS, April 11, 2000; 97(8): 4291 - 4296.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
W. R. Taylor, S. E. DePrimo, A. Agarwal, M. L. Agarwal, A. H. Schonthal, K. S. Katula, and G. R. Stark
Mechanisms of G2 Arrest in Response to Overexpression of p53
Mol. Biol. Cell, November 1, 1999; 10(11): 3607 - 3622.
[Abstract] [Full Text]


Home page
Cancer Res.Home page
B.-D. Chang, E. V. Broude, M. Dokmanovic, H. Zhu, A. Ruth, Y. Xuan, E. S. Kandel, E. Lausch, K. Christov, and I. B. Roninson
A Senescence-like Phenotype Distinguishes Tumor Cells That Undergo Terminal Proliferation Arrest after Exposure to Anticancer Agents
Cancer Res., August 1, 1999; 59(15): 3761 - 3767.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. A. Bond, M. F. Haughton, J. M. Rowson, P. J. Smith, V. Gire, D. Wynford-Thomas, and F. S. Wyllie
Control of Replicative Life Span in Human Cells: Barriers to Clonal Expansion Intermediate Between M1 Senescence and M2 Crisis
Mol. Cell. Biol., April 1, 1999; 19(4): 3103 - 3114.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
B. B. McConnell, F. J. Gregory, F. J. Stott, E. Hara, and G. Peters
Induced Expression of p16INK4a Inhibits Both CDK4- and CDK2-Associated Kinase Activity by Reassortment of Cyclin-CDK-Inhibitor Complexes
Mol. Cell. Biol., March 1, 1999; 19(3): 1981 - 1989.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
A. W. Lin, M. Barradas, J. C. Stone, L. van Aelst, M. Serrano, and S. W. Lowe
Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling
Genes & Dev., October 1, 1998; 12(19): 3008 - 3019.
[Abstract] [Full Text]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. M. Sedivy
Can ends justify the means?: Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells
PNAS, August 4, 1998; 95(16): 9078 - 9081.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sugihara, S. C. Kaul, J.-y. Kato, R. R. Reddel, H. Nomura, and R. Wadhwa
Pex19p Dampens the p19ARF-p53-p21WAF1 Tumor Suppressor Pathway*
J. Biol. Chem., June 1, 2001; 276(22): 18649 - 18652.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Collado, R. H. Medema, I. Garcia-Cao, M. L. N. Dubuisson, M. Barradas, J. Glassford, C. Rivas, B. M. T. Burgering, M. Serrano, and E. W.- F. Lam
Inhibition of the Phosphoinositide 3-Kinase Pathway Induces a Senescence-like Arrest Mediated by p27Kip1
J. Biol. Chem., July 21, 2000; 275(29): 21960 - 21968.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1998 by the American Association of Cancer Research.