CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Taraboletti, G.
Right arrow Articles by Giavazzi, R.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Taraboletti, G.
Right arrow Articles by Giavazzi, R.

Cell Growth & Differentiation, Vol 8, Issue 4 471-479, Copyright © 1997 by American Association of Cancer Research


ARTICLES

The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor

G Taraboletti, D Belotti, P Borsotti, V Vergani, M Rusnati, M Presta and R Giavazzi
Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.

Thrombospondin-1 (TSP) inhibits the angiogenic activity of basic fibroblast growth factor (bFGF). Here we address the hypothesis of a direct interaction between TSP and bFGF. Gel permeation chromatography and cross-linking experiments demonstrated that bFGF binds to TSP in solution. bFGF also bound to immobilized TSP in a solid-phase assay. Binding was dose-dependent, with a Kd in the nanomolar range, and was inhibited by anti-TSP antibodies. The 140-kDa carboxyl-terminal fragment of TSP, but not the 25-kDa heparin-binding fragment, fully retained the bFGF binding capacity. Accordingly, binding was inhibited by monoclonal antibodies directed against this fragment. Heparin completely blocked bFGF binding to TSP and to the 140-kDa fragment. TSP and its 140-kDa fragment inhibited the binding of bFGF to endothelial cells at concentrations (> or = 100 nM) that inhibited endothelial cell proliferation but not motility. Low-affinity binding was inhibited more than high-affinity binding (up to 76 and 41% inhibition, respectively), and the inhibition was reversed by anti-TSP antibodies. Vitronectin and transforming growth factor beta, potentially associated with TSP, did not affect bFGF binding to endothelial cells. Although TSP did not affect the activation of the high-affinity receptors, it reduced the long-term internalization of bFGF. We conclude that TSP binds to bFGF through a domain within its 140-kDa fragment, a mechanism that might affect bFGF interaction with endothelial cells, activity, and association with the extracellular matrix.


This article has been cited by other articles:


Home page
Proc. Natl. Acad. Sci. USAHome page
T. El Rayes, R. Catena, S. Lee, M. Stawowczyk, N. Joshi, C. Fischbach, C. A. Powell, A. J. Dannenberg, N. K. Altorki, D. Gao, et al.
Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1
PNAS, December 29, 2015; 112(52): 16000 - 16005.
[Abstract] [Full Text] [PDF]


Home page
Biol. Reprod.Home page
S. Farberov and R. Meidan
Functions and Transcriptional Regulation of Thrombospondins and Their Interrelationship with Fibroblast Growth Factor-2 in Bovine Luteal Cells
Biol Reprod, September 1, 2014; 91(3): 58 - 58.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Lung Cell. Mol. Physiol.Home page
J. P. Maloney, R. S. Stearman, T. M. Bull, D. W. Calabrese, M. L. Tripp-Addison, M. J. Wick, U. Broeckel, I. M. Robbins, L. A. Wheeler, J. D. Cogan, et al.
Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension
Am J Physiol Lung Cell Mol Physiol, March 15, 2012; 302(6): L541 - L554.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
G. Colombo, B. Margosio, L. Ragona, M. Neves, S. Bonifacio, D. S. Annis, M. Stravalaci, S. Tomaselli, R. Giavazzi, M. Rusnati, et al.
Non-peptidic Thrombospondin-1 Mimics as Fibroblast Growth Factor-2 Inhibitors: AN INTEGRATED STRATEGY FOR THE DEVELOPMENT OF NEW ANTIANGIOGENIC COMPOUNDS
J. Biol. Chem., March 19, 2010; 285(12): 8733 - 8742.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
N. V. Lee, M. Sato, D. S. Annis, J. A. Loo, L. Wu, D. F. Mosher, and M. L. Iruela-Arispe
ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2
EMBO J., November 15, 2006; 25(22): 5270 - 5283.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
C. Bossard, L. V. d. Berghe, H. Laurell, C. Castano, M. Cerutti, A.-C. Prats, and H. Prats
Antiangiogenic Properties of Fibstatin, an Extracellular FGF-2-Binding Polypeptide
Cancer Res., October 15, 2004; 64(20): 7507 - 7512.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
M. Rusnati, M. Camozzi, E. Moroni, B. Bottazzi, G. Peri, S. Indraccolo, A. Amadori, A. Mantovani, and M. Presta
Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis
Blood, July 1, 2004; 104(1): 92 - 99.
[Abstract] [Full Text] [PDF]


Home page
Circ. Res.Home page
A. W. Ashton, Y. Cheng, A. Helisch, and J. A. Ware
Thromboxane A2 Receptor Agonists Antagonize the Proangiogenic Effects of Fibroblast Growth Factor-2: Role of Receptor Internalization, Thrombospondin-1, and {alpha}v{beta}3
Circ. Res., April 2, 2004; 94(6): 735 - 742.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
B. Margosio, D. Marchetti, V. Vergani, R. Giavazzi, M. Rusnati, M. Presta, and G. Taraboletti
Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2
Blood, December 15, 2003; 102(13): 4399 - 4406.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. Luque, D. R. Carpizo, and M. L. Iruela-Arispe
ADAMTS1/METH1 Inhibits Endothelial Cell Proliferation by Direct Binding and Sequestration of VEGF165
J. Biol. Chem., June 27, 2003; 278(26): 23656 - 23665.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
L. C. Armstrong, B. Bjorkblom, K. D. Hankenson, A. W. Siadak, C. E. Stiles, and P. Bornstein
Thrombospondin 2 Inhibits Microvascular Endothelial Cell Proliferation by a Caspase-independent Mechanism
Mol. Biol. Cell, June 1, 2002; 13(6): 1893 - 1905.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Russo, R. Ragone, A. M. Facchiano, M. C. Capogrossi, and A. Facchiano
Platelet-derived Growth Factor-BB and Basic Fibroblast Growth Factor Directly Interact in Vitro with High Affinity
J. Biol. Chem., January 11, 2002; 277(2): 1284 - 1291.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
M. RUSNATI, G. TARABOLETTI, C. URBINATI, G. TULIPANO, R. GIULIANI, M. P. MOLINARI-TOSATTI, B. SENNINO, M. GIACCA, M. TYAGI, A. ALBINI, et al.
Thrombospondin-1/HIV-1 Tat protein interaction: modulation of the biological activity of extracellular Tat
FASEB J, October 1, 2000; 14(13): 1917 - 1930.
[Abstract] [Full Text]


Home page
EMBO J.Home page
T. Sasaki, H. Larsson, J. Kreuger, M. Salmivirta, L. Claesson-Welsh, U. Lindahl, E. Hohenester, and R. Timpl
Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin
EMBO J., November 15, 1999; 18(22): 6240 - 6248.
[Abstract] [Full Text] [PDF]


Home page
CirculationHome page
M. L. Iruela-Arispe, M. Lombardo, H. C. Krutzsch, J. Lawler, and D. D. Roberts
Inhibition of Angiogenesis by Thrombospondin-1 Is Mediated by 2 Independent Regions Within the Type 1 Repeats
Circulation, September 28, 1999; 100(13): 1423 - 1431.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
G. Fontanini, L. Boldrini, A. Calcinai, S. Chine, M. Lucchi, A. Mussi, C. A. Angeletti, F. Basolo, and G. Bevilacqua
Thrombospondins I and II Messenger RNA Expression in Lung Carcinoma: Relationship with p53 Alterations, Angiogenic Growth Factors, and Vascular Density
Clin. Cancer Res., January 1, 1999; 5(1): 155 - 161.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
C. Perollet, Z. C. Han, C. Savona, J. P. Caen, and A. Bikfalvi
Platelet Factor 4 Modulates Fibroblast Growth Factor 2 (FGF-2) Activity and Inhibits FGF-2 Dimerization
Blood, May 1, 1998; 91(9): 3289 - 3299.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
T. R. Kyriakides, Y.-H. Zhu, L. T. Smith, S. D. Bain, Z. Yang, M. T. Lin, K. G. Danielson, R. V. Iozzo, M. LaMarca, C. E. McKinney, et al.
Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis
J. Cell Biol., January 26, 1998; 140(2): 419 - 430.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
M. Rusnati, E. Tanghetti, P. Dell'Era, A. Gualandris, and M. Presta
alpha vbeta 3 Integrin Mediates the Cell-adhesive Capacity and Biological Activity of Basic Fibroblast Growth Factor (FGF-2) in Cultured Endothelial Cells
Mol. Biol. Cell, December 1, 1997; 8(12): 2449 - 2461.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
K. Russo, R. Ragone, A. M. Facchiano, M. C. Capogrossi, and A. Facchiano
Platelet-derived Growth Factor-BB and Basic Fibroblast Growth Factor Directly Interact in Vitro with High Affinity
J. Biol. Chem., January 11, 2002; 277(2): 1284 - 1291.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1997 by the American Association of Cancer Research.