HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |
Cell Growth & Differentiation, Vol 8, Issue 12 1349-1358, Copyright © 1997 by American Association of Cancer Research
ARTICLES |
H Shimizu, MA Julius, M Giarre, Z Zheng, AM Brown and J Kitajewski
Strang-Cornell Cancer Research Laboratory, Cornell University Medical College, New York, New York 10021, USA.
Several members of the Wnt family of secreted factors are strongly implicated as regulators of mammary cell growth and differentiation. To investigate Wnt signaling in mammary cells, we have assessed the abilities of 10 different Wnt genes to cause transformation of C57MG mammary epithelial cells and in parallel studied their effects on beta-catenin, a component of the Wnt-1 signaling pathway. Autocrine transforming potential was tested by expression of Wnt proteins in C57MG cells, and paracrine effects were evaluated by coculture of C57MG cells with fibroblasts secreting different Wnt proteins. Western blotting confirmed the expression of each Wnt protein in the relevant cell lines. Activities of the 10 Wnts tested were divisible into three groups. Wnt-1, Wnt-2, Wnt-3, and Wnt3a induced strong transformation and an elongated refractile cell morphology. Wnt-6 and Wnt-7a produced weak morphological changes. Wnt-4, Wnt-5a, Wnt-5b, and Wnt-7b had no effect at all on C57MG morphology. Analysis of beta-catenin levels showed that the transforming Wnts induced accumulation of cytosolic beta-catenin, whereas nontransforming Wnts did not. These result demonstrate that several Wnt family members are capable of elevating beta-catenin levels and suggest that their signaling pathways share intracellular signaling components. The correlation between increased cytosolic beta-catenin levels and C57MG transformation supports a role for beta-catenin in transformation of these cells. These data also imply the existence of receptors that respond to certain Wnt proteins but not to others.
This article has been cited by other articles:
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Mahnaz, L. D. Roy, M. Bose, C. De, S. Nath, and P. Mukherjee Repression of MUC1 promotes expansion and suppressive function of myeloid-derived suppressor cells in pancreatic ductal adenocarcinoma and breast cancer murine models bioRxiv, December 10, 2020; (2020) 2020.12.07.415299v1. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. Tribulo, J. I. Moss, M. Ozawa, Z. Jiang, X. Tian, and P. J. Hansen WNT regulation of embryonic development likely involves pathways independent of nuclear CTNNB1 Reproduction, April 1, 2017; 153(4): 405 - 419. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. A. Hernandez Gifford The role of WNT signaling in adult ovarian folliculogenesis Reproduction, October 1, 2015; 150(4): R137 - R148. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. L. Leach, D. E. Buchholz, V. P. Nadar, S. E. Lowenstein, and D. O. Clegg Canonical/{beta}-Catenin Wnt Pathway Activation Improves Retinal Pigmented Epithelium Derivation From Human Embryonic Stem Cells , February 1, 2015; 56(2): 1002 - 1013. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. Geetha-Loganathan, S. Nimmagadda, K. Fu, and J. M. Richman Avian Facial Morphogenesis Is Regulated by c-Jun N-terminal Kinase/Planar Cell Polarity (JNK/PCP) Wingless-related (WNT) Signaling J. Biol. Chem., August 29, 2014; 289(35): 24153 - 24167. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Schaale, J. Brandenburg, A. Kispert, M. Leitges, S. Ehlers, and N. Reiling Wnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis-Infected Mice and Is Involved in Macrophage Differentiation and Proliferation J. Immunol., November 15, 2013; 191(10): 5182 - 5195. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. T. Thliveris, B. Schwefel, L. Clipson, L. Plesh, C. D. Zahm, A. A. Leystra, M. K. Washington, R. Sullivan, D. A. Deming, M. A. Newton, et al. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors PNAS, July 9, 2013; 110(28): 11523 - 11528. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. M. Gonzalez-Sancho, Y. E. Greer, C. L. Abrahams, Y. Takigawa, B. Baljinnyam, K. H. Lee, K. S. Lee, J. S. Rubin, and A. M. C. Brown Functional Consequences of Wnt-induced Dishevelled 2 Phosphorylation in Canonical and Noncanonical Wnt Signaling J. Biol. Chem., March 29, 2013; 288(13): 9428 - 9437. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. van Amerongen Alternative Wnt Pathways and Receptors Cold Spring Harb Perspect Biol, October 1, 2012; 4(10): a007914 - a007914. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Goel, E. N. Chin, S. A. Fakhraldeen, S. M. Berry, D. J. Beebe, and C. M. Alexander Both LRP5 and LRP6 Receptors Are Required to Respond to Physiological Wnt Ligands in Mammary Epithelial Cells and Fibroblasts J. Biol. Chem., May 11, 2012; 287(20): 16454 - 16466. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. Wu, J. Rollin, I. Masse, J. Lamartine, and X. Gidrol p63 Regulates Human Keratinocyte Proliferation via MYC-regulated Gene Network and Differentiation Commitment through Cell Adhesion-related Gene Network J. Biol. Chem., February 17, 2012; 287(8): 5627 - 5638. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. D. Berendsen, L. W. Fisher, T. M. Kilts, R. T. Owens, P. G. Robey, J. S. Gutkind, and M. F. Young Modulation of canonical Wnt signaling by the extracellular matrix component biglycan PNAS, October 11, 2011; 108(41): 17022 - 17027. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. J. Barrott, G. M. Cash, A. P. Smith, J. R. Barrow, and L. C. Murtaugh Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome PNAS, August 2, 2011; 108(31): 12752 - 12757. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. Nalesso, J. Sherwood, J. Bertrand, T. Pap, M. Ramachandran, C. De Bari, C. Pitzalis, and F. Dell'Accio WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways J. Cell Biol., May 2, 2011; 193(3): 551 - 564. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Kolegraff, P. Nava, M. N. Helms, C. A. Parkos, and A. Nusrat Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/{beta}-catenin signaling Mol. Biol. Cell, April 15, 2011; 22(8): 1121 - 1134. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. C. Gonsalves, K. Klein, B. B. Carson, S. Katz, L. A. Ekas, S. Evans, R. Nagourney, T. Cardozo, A. M. C. Brown, and R. DasGupta An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway PNAS, April 12, 2011; 108(15): 5954 - 5963. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. M. Sousa, J. C. Villaescusa, L. Cajanek, J. K. Ondr, G. Castelo-Branco, W. Hofstra, V. Bryja, C. Palmberg, T. Bergman, B. Wainwright, et al. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain J. Biol. Chem., March 5, 2010; 285(10): 7246 - 7253. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. van Amerongen and R. Nusse Towards an integrated view of Wnt signaling in development Development, October 1, 2009; 136(19): 3205 - 3214. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. L. Schwartz, R. Malgor, E. Dickerson, A. T. Weeraratna, A. Slominski, J. Wortsman, N. Harii, A. D. Kohn, R. T. Moon, F. L. Schwartz, et al. Phenylmethimazole Decreases Toll-Like Receptor 3 and Noncanonical Wnt5a Expression in Pancreatic Cancer and Melanoma Together with Tumor Cell Growth and Migration Clin. Cancer Res., June 15, 2009; 15(12): 4114 - 4122. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. Grandy, J. Shan, X. Zhang, S. Rao, S. Akunuru, H. Li, Y. Zhang, I. Alpatov, X. A. Zhang, R. A. Lang, et al. Discovery and Characterization of a Small Molecule Inhibitor of the PDZ Domain of Dishevelled J. Biol. Chem., June 12, 2009; 284(24): 16256 - 16263. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. Medrek, G. Landberg, T. Andersson, and K. Leandersson Wnt-5a-CKI{alpha} Signaling Promotes {beta}-Catenin/E-Cadherin Complex Formation and Intercellular Adhesion in Human Breast Epithelial Cells J. Biol. Chem., April 17, 2009; 284(16): 10968 - 10979. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Adell, E. Salo, M. Boutros, and K. Bartscherer Smed-Evi/Wntless is required for {beta}-catenin-dependent and -independent processes during planarian regeneration Development, March 15, 2009; 136(6): 905 - 910. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() V. Bryja, E. R. Andersson, A. Schambony, M. Esner, L. Bryjova, K. K. Biris, A. C. Hall, B. Kraft, L. Cajanek, T. P. Yamaguchi, et al. The Extracellular Domain of Lrp5/6 Inhibits Noncanonical Wnt Signaling In Vivo Mol. Biol. Cell, February 1, 2009; 20(3): 924 - 936. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. van Amerongen, A. Mikels, and R. Nusse Alternative Wnt Signaling Is Initiated by Distinct Receptors Sci. Signal., September 2, 2008; 1(35): re9 - re9. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z Fan, J Li, J Du, H Zhang, Y Shen, C-Y Wang, and S Wang A missense mutation in PTCH2 underlies dominantly inherited NBCCS in a Chinese family J. Med. Genet., May 1, 2008; 45(5): 303 - 308. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. D. Cohen, Y. Tian, and E. E. Morrisey Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal Development, March 1, 2008; 135(5): 789 - 798. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Yoshikawa, K. Matsubara, X. Zhou, S. Okamura, T. Kubo, Y. Murase, Y. Shikauchi, M. Esteller, J. G. Herman, X. Wei Wang, et al. WNT10B Functional Dualism: beta-Catenin/Tcf-dependent Growth Promotion or Independent Suppression with Deregulated Expression in Cancer Mol. Biol. Cell, November 1, 2007; 18(11): 4292 - 4303. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. E. Binnerts, K.-A. Kim, J. M. Bright, S. M. Patel, K. Tran, M. Zhou, J. M. Leung, Y. Liu, W. E. Lomas III, M. Dixon, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6 PNAS, September 11, 2007; 104(37): 14700 - 14705. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() V. Bryja, G. Schulte, N. Rawal, A. Grahn, and E. Arenas Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism J. Cell Sci., February 15, 2007; 120(4): 586 - 595. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. V. Semenov and X. He LRP5 Mutations Linked to High Bone Mass Diseases Cause Reduced LRP5 Binding and Inhibition by SOST J. Biol. Chem., December 15, 2006; 281(50): 38276 - 38284. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. N. H. Masckauchan, D. Agalliu, M. Vorontchikhina, A. Ahn, N. L. Parmalee, C.-M. Li, A. Khoo, B. Tycko, A. M.C. Brown, and J. Kitajewski Wnt5a Signaling Induces Proliferation and Survival of Endothelial Cells In Vitro and Expression of MMP-1 and Tie-2 Mol. Biol. Cell, December 1, 2006; 17(12): 5163 - 5172. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Ohta, S. Kuriyama, T. Okafuji, R. Gejima, S.-i. Ohnuma, and H. Tanaka Tsukushi cooperates with VG1 to induce primitive streak and Hensen's node formation in the chick embryo Development, October 1, 2006; 133(19): 3777 - 3786. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. Krieghoff, J. Behrens, and B. Mayr Nucleo-cytoplasmic distribution of {beta}-catenin is regulated by retention J. Cell Sci., April 1, 2006; 119(7): 1453 - 1463. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Ayyanan, G. Civenni, L. Ciarloni, C. Morel, N. Mueller, K. Lefort, A. Mandinova, W. Raffoul, M. Fiche, G. P. Dotto, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism PNAS, March 7, 2006; 103(10): 3799 - 3804. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Safholm, K. Leandersson, J. Dejmek, C. K. Nielsen, B. O. Villoutreix, and T. Andersson A Formylated Hexapeptide Ligand Mimics the Ability of Wnt-5a to Impair Migration of Human Breast Epithelial Cells J. Biol. Chem., February 3, 2006; 281(5): 2740 - 2749. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. M. Cadigan and Y. I. Liu Wnt signaling: complexity at the surface J. Cell Sci., February 1, 2006; 119(3): 395 - 402. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C.-l. Huang, D. Liu, J. Nakano, S. Ishikawa, K. Kontani, H. Yokomise, and M. Ueno Wnt5a Expression Is Associated With the Tumor Proliferation and the Stromal Vascular Endothelial Growth Factor--An Expression in Non-Small-Cell Lung Cancer J. Clin. Oncol., December 1, 2005; 23(34): 8765 - 8773. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() X. Zi, Y. Guo, A. R. Simoneau, C. Hope, J. Xie, R. F. Holcombe, and B. H. Hoang Expression of Frzb/Secreted Frizzled-Related Protein 3, a Secreted Wnt Antagonist, in Human Androgen-Independent Prostate Cancer PC-3 Cells Suppresses Tumor Growth and Cellular Invasiveness Cancer Res., November 1, 2005; 65(21): 9762 - 9770. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Uren, S. Fallen, H. Yuan, A. Usubutun, T. Kucukali, R. Schlegel, and J. A. Toretsky Activation of the Canonical Wnt Pathway during Genital Keratinocyte Transformation: A Model for Cervical Cancer Progression Cancer Res., July 15, 2005; 65(14): 6199 - 6206. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() X.-M. Xu, Y.-Q. Zhou, and M.-H. Wang Mechanisms of Cytoplasmic {beta}-Catenin Accumulation and Its Involvement in Tumorigenic Activities Mediated by Oncogenic Splicing Variant of the Receptor Originated from Nantes Tyrosine Kinase J. Biol. Chem., July 1, 2005; 280(26): 25087 - 25094. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Lyu and C.-K. Joo Wnt-7a Up-regulates Matrix Metalloproteinase-12 Expression and Promotes Cell Proliferation in Corneal Epithelial Cells during Wound Healing J. Biol. Chem., June 3, 2005; 280(22): 21653 - 21660. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. Liu, A. Bafico, and S. A. Aaronson The Mechanism of Endogenous Receptor Activation Functionally Distinguishes Prototype Canonical and Noncanonical Wnts Mol. Cell. Biol., May 1, 2005; 25(9): 3475 - 3482. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. Hayward, K. Brennan, P. Sanders, T. Balayo, R. DasGupta, N. Perrimon, and A. M. Arias Notch modulates Wnt signalling by associating with Armadillo/{beta}-catenin and regulating its transcriptional activity Development, April 15, 2005; 132(8): 1819 - 1830. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. M. Vertino, J. M. Taylor-Jones, K. A. Longo, E. D. Bearden, T. F. Lane, R. E. McGehee Jr., O. A. MacDougald, and C. A. Peterson Wnt10b Deficiency Promotes Coexpression of Myogenic and Adipogenic Programs in Myoblasts Mol. Biol. Cell, April 1, 2005; 16(4): 2039 - 2048. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Dejmek, K. Leandersson, J. Manjer, A. Bjartell, S. O. Emdin, W. F. Vogel, G. Landberg, and T. Andersson Expression and Signaling Activity of Wnt-5a/Discoidin Domain Receptor-1 and Syk Plays Distinct but Decisive Roles in Breast Cancer Patient Survival Clin. Cancer Res., January 15, 2005; 11(2): 520 - 528. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M.-S. Yun, S.-E. Kim, S. H. Jeon, J.-S. Lee, and K.-Y. Choi Both ERK and Wnt/{beta}-catenin pathways are involved in Wnt3a-induced proliferation J. Cell Sci., January 15, 2005; 118(2): 313 - 322. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. Ouko, T. R. Ziegler, L. H. Gu, L. M. Eisenberg, and V. W. Yang Wnt11 Signaling Promotes Proliferation, Transformation, and Migration of IEC6 Intestinal Epithelial Cells J. Biol. Chem., June 18, 2004; 279(25): 26707 - 26715. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. M. Gonzalez-Sancho, K. R. Brennan, L. A. Castelo-Soccio, and A. M. C. Brown Wnt Proteins Induce Dishevelled Phosphorylation via an LRP5/6- Independent Mechanism, Irrespective of Their Ability To Stabilize {beta}-Catenin Mol. Cell. Biol., June 1, 2004; 24(11): 4757 - 4768. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Mericskay, J. Kitajewski, and D. Sassoon Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus Development, May 1, 2004; 131(9): 2061 - 2072. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Zilberberg, A. Yaniv, and A. Gazit The Low Density Lipoprotein Receptor-1, LRP1, Interacts with the Human Frizzled-1 (HFz1) and Down-regulates the Canonical Wnt Signaling Pathway J. Biol. Chem., April 23, 2004; 279(17): 17535 - 17542. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B. H. Hoang, T. Kubo, J. H. Healey, R. Yang, S. S. Nathan, E. A. Kolb, B. Mazza, P. A. Meyers, and R. Gorlick Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-{beta}-Catenin Pathway Cancer Res., April 15, 2004; 64(8): 2734 - 2739. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Lyu and C.-K. Joo Wnt signaling enhances FGF2-triggered lens fiber cell differentiation Development, April 15, 2004; 131(8): 1813 - 1824. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Morkel, J. Huelsken, M. Wakamiya, J. Ding, M. van de Wetering, H. Clevers, M. M. Taketo, R. R. Behringer, M. M. Shen, and W. Birchmeier {beta}-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation Development, December 22, 2003; 130(25): 6283 - 6294. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. M. Braun, A. Etheridge, A. Bernard, C. P. Robertson, and H. Roelink Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain Development, December 1, 2003; 130(23): 5579 - 5587. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. Castelo-Branco, J. Wagner, F. J. Rodriguez, J. Kele, K. Sousa, N. Rawal, H. A. Pasolli, E. Fuchs, J. Kitajewski, and E. Arenas Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a PNAS, October 28, 2003; 100(22): 12747 - 12752. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Caricasole, T. Ferraro, L. Iacovelli, E. Barletta, A. Caruso, D. Melchiorri, G. C. Terstappen, and F. Nicoletti Functional Characterization of WNT7A Signaling in PC12 Cells: INTERACTION WITH A FZD5{middle dot}LRP6 RECEPTOR COMPLEX AND MODULATION BY DICKKOPF PROTEINS J. Biol. Chem., September 26, 2003; 278(39): 37024 - 37031. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B. K. Jordan, J. H.- C. Shen, R. Olaso, H. A. Ingraham, and E. Vilain Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/{beta}-catenin synergy PNAS, September 16, 2003; 100(19): 10866 - 10871. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Ohira, R. M. Gemmill, K. Ferguson, S. Kusy, J. Roche, E. Brambilla, C. Zeng, A. Baron, L. Bemis, P. Erickson, et al. WNT7a induces E-cadherin in lung cancer cells PNAS, September 2, 2003; 100(18): 10429 - 10434. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. Liu, A. Bafico, V. K. Harris, and S. A. Aaronson A Novel Mechanism for Wnt Activation of Canonical Signaling through the LRP6 Receptor Mol. Cell. Biol., August 15, 2003; 23(16): 5825 - 5835. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. Uematsu, S. Kanazawa, L. You, B. He, Z. Xu, K. Li, B. M. Peterlin, F. McCormick, and D. M. Jablons Wnt Pathway Activation in Mesothelioma: Evidence of Dishevelled Overexpression and Transcriptional Activity of {beta}-Catenin Cancer Res., August 1, 2003; 63(15): 4547 - 4551. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Dabdoub, M. J. Donohue, A. Brennan, V. Wolf, M. Montcouquiol, D. A. Sassoon, J.-C. Hseih, J. S. Rubin, P. C. Salinas, and M. W. Kelley Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea Development, June 1, 2003; 130(11): 2375 - 2384. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. R. Howe, O. Watanabe, J. Leonard, and A. M. C. Brown Twist Is Up-Regulated in Response to Wnt1 and Inhibits Mouse Mammary Cell Differentiation Cancer Res., April 15, 2003; 63(8): 1906 - 1913. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. Ni, Y. Anini, X. Fang, G. Mills, P. L. Brubaker, and T. Jin Transcriptional Activation of the Proglucagon Gene by Lithium and {beta}-Catenin in Intestinal Endocrine L Cells J. Biol. Chem., January 10, 2003; 278(2): 1380 - 1387. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Karasawa, H. Yokokura, J. Kitajewski, and P. J. Lombroso Frizzled-9 Is Activated by Wnt-2 and Functions in Wnt/{beta}-Catenin Signaling J. Biol. Chem., October 4, 2002; 277(40): 37479 - 37486. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. L. Holmen, A. Salic, C. R. Zylstra, M. W. Kirschner, and B. O. Williams A Novel Set of Wnt-Frizzled Fusion Proteins Identifies Receptor Components That Activate {beta}-Catenin-dependent Signaling J. Biol. Chem., September 20, 2002; 277(38): 34727 - 34735. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. You, D. Saims, S. Chen, Z. Zhang, D. C. Guttridge, K.-l. Guan, O. A. MacDougald, A. M.C. Brown, G. Evan, J. Kitajewski, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis J. Cell Biol., April 29, 2002; 157(3): 429 - 440. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. W. Briggs, Z. Li, and D. B. Sacks IQGAP1-mediated Stimulation of Transcriptional Co-activation by {beta}-Catenin Is Modulated by Calmodulin J. Biol. Chem., March 1, 2002; 277(9): 7453 - 7465. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J.-H. Ryu, S.-J. Kim, S.-H. Kim, C.-D. Oh, S.-G. Hwang, C.-H. Chun, S.-H. Oh, J.-K. Seong, T.-L. Huh, and J.-S. Chun Regulation of the chondrocyte phenotype by {beta}-catenin Development, January 12, 2002; 129(23): 5541 - 5550. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W. Hsu, R. Shakya, and F. Costantini Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice J. Cell Biol., December 10, 2001; 155(6): 1055 - 1064. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. K. Dhoot, M. K. Gustafsson, X. Ai, W. Sun, D. M. Standiford, and C. P. Emerson Jr. Regulation of Wnt Signaling and Embryo Patterning by an Extracellular Sulfatase Science, August 31, 2001; 293(5535): 1663 - 1666. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() I. Skromne and C. D. Stern Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo Development, August 1, 2001; 128(15): 2915 - 2927. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Galceran, S.-C. Hsu, and R. Grosschedl Rescue of a Wnt mutation by an activated form of LEF-1: Regulation of maintenance but not initiation of Brachyury expression PNAS, July 17, 2001; 98(15): 8668 - 8673. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Yamane, T. Kunisada, H. Tsukamoto, H. Yamazaki, H. Niwa, S. Takada, and S.-I. Hayashi Wnt Signaling Regulates Hemopoiesis Through Stromal Cells J. Immunol., July 15, 2001; 167(2): 765 - 772. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. C. Mertani, T. Zhu, E. L. K. Goh, K.-O. Lee, G. Morel, and P. E. Lobie Autocrine Human Growth Hormone (hGH) Regulation of Human Mammary Carcinoma Cell Gene Expression: IDENTIFICATION OF CHOP AS A MEDIATOR OF hGH-STIMULATED HUMAN MAMMARY CARCINOMA CELL SURVIVAL J. Biol. Chem., June 15, 2001; 276(24): 21464 - 21475. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Jonsson and T. Andersson Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells J. Cell Sci., June 1, 2001; 114(11): 2043 - 2053. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W. Szeto, W. Jiang, D. A. Tice, B. Rubinfeld, P. G. Hollingshead, S. E. Fong, D. L. Dugger, T. Pham, D. G. Yansura, T. A. Wong, et al. Overexpression of the Retinoic Acid-responsive Gene Stra6 in Human Cancers and Its Synergistic Induction by Wnt-1 and Retinoic Acid Cancer Res., May 1, 2001; 61(10): 4197 - 4205. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Imbert, R. Eelkema, S. Jordan, H. Feiner, and P. Cowin {Delta}n89{beta}-Catenin Induces Precocious Development, Differentiation, and Neoplasia in Mammary Gland J. Cell Biol., April 30, 2001; 153(3): 555 - 568. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Goruppi, C. Chiaruttini, M. E. Ruaro, B. Varnum, and C. Schneider Gas6 Induces Growth, {beta}-Catenin Stabilization, and T-Cell Factor Transcriptional Activation in Contact-Inhibited C57 Mammary Cells Mol. Cell. Biol., February 1, 2001; 21(3): 902 - 915. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Chen, D. C. Guttridge, Z. You, Z. Zhang, A. Fribley, M. W. Mayo, J. Kitajewski, and C.-Y. Wang WNT-1 Signaling Inhibits Apoptosis by Activating {beta}-Catenin/T Cell Factor-Mediated Transcription J. Cell Biol., January 8, 2001; 152(1): 87 - 96. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Calvo, J. West, W. Franklin, P. Erickson, L. Bemis, E. Li, B. Helfrich, P. Bunn, J. Roche, E. Brambilla, et al. Altered HOX and WNT7A expression in human lung cancer PNAS, November 7, 2000; 97(23): 12776 - 12781. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Haertel-Wiesmann, Y. Liang, W. J. Fantl, and L. T. Williams Regulation of Cyclooxygenase-2 and Periostin by Wnt-3 in Mouse Mammary Epithelial Cells J. Biol. Chem., October 13, 2000; 275(41): 32046 - 32051. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. J. Dunn, B. O. Williams, Y. Li, and W. J. Pavan Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development PNAS, August 29, 2000; 97(18): 10050 - 10055. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. H. Song, D. J. Sussman, and D. C. Seldin Endogenous Protein Kinase CK2 Participates in Wnt Signaling in Mammary Epithelial Cells J. Biol. Chem., August 4, 2000; 275(31): 23790 - 23797. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. Polakis Wnt signaling and cancer Genes & Dev., August 1, 2000; 14(15): 1837 - 1851. [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Toyofuku, Z. Hong, T. Kuzuya, M. Tada, and M. Hori WNT/Frizzled-2 Signaling Induces Aggregation and Adhesion among Cardiac Myocytes by Increased Cadherin-{beta}-Catenin Complex J. Cell Biol., July 10, 2000; 150(1): 225 - 242. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Naylor, M. J. Smalley, D. Robertson, B. A. Gusterson, P. A. Edwards, and T. C. Dale Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium J. Cell Sci., June 15, 2000; 113(12): 2129 - 2138. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R.-H. Chen, W. V. Ding, and F. McCormick Wnt Signaling to {beta}-Catenin Involves Two Interactive Components: GLYCOGEN SYNTHASE KINASE-3{beta} INHIBITION AND ACTIVATION OF PROTEIN KINASE C J. Biol. Chem., June 9, 2000; 275(23): 17894 - 17899. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S Allard, P Adin, L Gouedard, N di Clemente, N Josso, M. Orgebin-Crist, J. Picard, and F Xavier Molecular mechanisms of hormone-mediated Mullerian duct regression: involvement of beta-catenin Development, January 8, 2000; 127(15): 3349 - 3360. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C Hartmann and C. Tabin Dual roles of Wnt signaling during chondrogenesis in the chicken limb Development, January 7, 2000; 127(14): 3141 - 3159. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Dennis, M. Aikawa, W. Szeto, P. A. d'Amore, and J. Papkoff A secreted frizzled related protein, FrzA, selectively associates with Wnt-1 protein and regulates wnt-1 signaling J. Cell Sci., November 1, 1999; 112(21): 3815 - 3820. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. W. Klymkowsky, B. O. Williams, G. D. Barish, H. E. Varmus, and Y. E. Vourgourakis Membrane-anchored Plakoglobins Have Multiple Mechanisms of Action in Wnt Signaling Mol. Biol. Cell, October 1, 1999; 10(10): 3151 - 3169. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Nagasawa, Y. Miyoshi, K. Iwao, Y. Shinomura, Y. Matsuzawa, and Y. Nakamura Transformation and Morphological Changes of Murine L Cells by Transfection with a Mutated Form of {beta}-Catenin Cancer Res., August 1, 1999; 59(15): 3539 - 3542. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J.-S. Lee, A. Ishimoto, and S.-i. Yanagawa Characterization of Mouse Dishevelled (Dvl) Proteins in Wnt/Wingless Signaling Pathway J. Biol. Chem., July 23, 1999; 274(30): 21464 - 21470. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. Yamamoto, S. Kishida, M. Kishida, S. Ikeda, S. Takada, and A. Kikuchi Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3{beta} Regulates Its Stability J. Biol. Chem., April 16, 1999; 274(16): 10681 - 10684. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W. Hsu, L. Zeng, and F. Costantini Identification of a Domain of Axin That Binds to the Serine/Threonine Protein Phosphatase 2A and a Self-binding Domain J. Biol. Chem., February 5, 1999; 274(6): 3439 - 3445. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. Pennica, T. A. Swanson, J. W. Welsh, M. A. Roy, D. A. Lawrence, J. Lee, J. Brush, L. A. Taneyhill, B. Deuel, M. Lew, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors PNAS, December 8, 1998; 95(25): 14717 - 14722. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. S. Young, M. Kitamura, S. Hardy, and J. Kitajewski Wnt-1 Induces Growth, Cytosolic {beta}-Catenin, and Tcf/Lef Transcriptional Activation in Rat-1 Fibroblasts Mol. Cell. Biol., May 1, 1998; 18(5): 2474 - 2485. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Haertel-Wiesmann, Y. Liang, W. J. Fantl, and L. T. Williams Regulation of Cyclooxygenase-2 and Periostin by Wnt-3 in Mouse Mammary Epithelial Cells J. Biol. Chem., October 13, 2000; 275(41): 32046 - 32051. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. C. Mertani, T. Zhu, E. L. K. Goh, K.-O. Lee, G. Morel, and P. E. Lobie Autocrine Human Growth Hormone (hGH) Regulation of Human Mammary Carcinoma Cell Gene Expression: IDENTIFICATION OF CHOP AS A MEDIATOR OF hGH-STIMULATED HUMAN MAMMARY CARCINOMA CELL SURVIVAL J. Biol. Chem., June 15, 2001; 276(24): 21464 - 21475. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R.-H. Chen, W. V. Ding, and F. McCormick Wnt Signaling to {beta}-Catenin Involves Two Interactive Components: GLYCOGEN SYNTHASE KINASE-3{beta} INHIBITION AND ACTIVATION OF PROTEIN KINASE C J. Biol. Chem., June 9, 2000; 275(23): 17894 - 17899. [Abstract] [Full Text] [PDF] ![]() |
![]() |
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |