CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Cavalli, L. R.
Right arrow Articles by Liang, B. C.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Cavalli, L. R.
Right arrow Articles by Liang, B. C.

Cell Growth & Differentiation, Vol 8, Issue 11 1189-1198, Copyright © 1997 by American Association of Cancer Research


ARTICLES

Diminished tumorigenic phenotype after depletion of mitochondrial DNA

LR Cavalli, M Varella-Garcia and BC Liang
Department of Neurology, University of Colorado Health Sciences Center, Denver, USA.

Modulation of tumorigenicity has been considered to be a reflection of the (nuclear) genetic and cellular aberrations present in tumor cells. Recent studies have suggested that cytoplasmic elements can also contribute to the malignant phenotype of cancer, and that mitochondria may be important in this process. We, therefore, undertook a study to evaluate the effects of depletion of functional mitochondria on the tumorigenic phenotype. Brain and breast tumor cells were depleted of mitochondrial DNA [rho(-)] by treatment with ethidium bromide. These rho(-) respiratory-deficient cells showed a distinct change in the tumorigenic phenotype, including loss of ability to grow in an anchorage-independent fashion and, interestingly, a substantial increase in sensitivity to cytotoxic drugs (1,3-bis-chloroethyl-1-nitrosourea and cis-diamminedichloroplatinum(II)). Reversion to the tumorigenic phenotype was accomplished with transfer of normal mitochondria into the diminished tumorigenic rho(-) cells. No changes in expression of the apoptosis genes bcl-2 and bax, nor the drug resistance genes mdr1, mrp, or O6-alkyltransferase was found in any of the cell types (de novo, rho(-), or cybrid). Further, the type of cell death remained the same, i.e., cells with and without mitochondria underwent apoptosis in response to exposure to cytotoxic agents. Our results indicate that mitochondria/mitochondrial DNA play a direct role in modulating aspects of the tumorigenic phenotype, although they are not necessarily a sine qua non for apoptotic cell death. This is particularly interesting because most tumor tissues are more dependent upon glycolysis for energy production, rather than mitochondrially mediated oxidative phosphorylation. Creation of rho(-) cells will be useful to study the mitochondrial processes involved in tumorigenesis.


This article has been cited by other articles:


Home page
G3Home page
L. Dirick, W. Bendris, V. Loubiere, T. Gostan, E. Gueydon, and E. Schwob
Metabolic and Environmental Conditions Determine Nuclear Genomic Instability in Budding Yeast Lacking Mitochondrial DNA
g3, January 30, 2017; 4(3): 411 - 423.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. M. Hegazy, D. Yamada, M. Kobayashi, S. Kohno, M. Ueno, M. A. E. Ali, K. Ohta, Y. Tadokoro, Y. Ino, T. Todo, et al.
Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance
J. Biol. Chem., October 7, 2016; 291(41): 21496 - 21509.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
C. E. Bowman, L. Zhao, T. Hartung, and M. J. Wolfgang
Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series
Mol. Cell. Biol., August 1, 2016; 36(15): 2089 - 2104.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
A. Viale, D. Corti, and G. F. Draetta
Tumors and Mitochondrial Respiration: A Neglected Connection
Cancer Res., September 15, 2015; 75(18): 3687 - 3691.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
T. S. Pardee, K. Lee, J. Luddy, C. Maturo, R. Rodriguez, S. Isom, L. D. Miller, K. M. Stadelman, D. Levitan, D. Hurd, et al.
A Phase I Study of the First-in-Class Antimitochondrial Metabolism Agent, CPI-613, in Patients with Advanced Hematologic Malignancies
Clin. Cancer Res., October 15, 2014; 20(20): 5255 - 5264.
[Abstract] [Full Text] [PDF]


Home page
Cancer DiscoveryHome page
A. M. Strohecker and E. White
Targeting Mitochondrial Metabolism by Inhibiting Autophagy in BRAF-Driven Cancers
Cancer Discovery, July 1, 2014; 4(7): 766 - 772.
[Abstract] [Full Text] [PDF]


Home page
Anticancer ResHome page
B. D. MAYBURY
Mitochondrial DNA Damage Is Uncommon in Cancer but Can Promote Aggressive Behaviour
Anticancer Res, September 1, 2013; 33(9): 3543 - 3552.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
V. Fogal, A. D. Richardson, P. P. Karmali, I. E. Scheffler, J. W. Smith, and E. Ruoslahti
Mitochondrial p32 Protein Is a Critical Regulator of Tumor Metabolism via Maintenance of Oxidative Phosphorylation
Mol. Cell. Biol., March 15, 2010; 30(6): 1303 - 1318.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
S. Grandemange, P. Seyer, A. Carazo, P. Becuwe, L. Pessemesse, M. Busson, C. Marsac, P. Roger, F. Casas, G. Cabello, et al.
Stimulation of Mitochondrial Activity by p43 Overexpression Induces Human Dermal Fibroblast Transformation
Cancer Res., May 15, 2005; 65(10): 4282 - 4291.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
X. Dong, K. Ghoshal, S. Majumder, S. P. Yadav, and S. T. Jacob
Mitochondrial Transcription Factor A and Its Downstream Targets Are Up-regulated in a Rat Hepatoma
J. Biol. Chem., November 8, 2002; 277(45): 43309 - 43318.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
G. Amuthan, G. Biswas, S.-Y. Zhang, A. Klein-Szanto, C. Vijayasarathy, and N. G. Avadhani
Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion
EMBO J., April 17, 2001; 20(8): 1910 - 1920.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
S. Ohnami, N. Matsumoto, M. Nakano, K. Aoki, K. Nagasaki, T. Sugimura, M. Terada, and T. Yoshida
Identification of Genes Showing Differential Expression in Antisense K-ras-transduced Pancreatic Cancer Cells with Suppressed Tumorigenicity
Cancer Res., November 1, 1999; 59(21): 5565 - 5571.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
B. Joshi, L. Li, B. G. Taffe, Z. Zhu, S. Wahl, H. Tian, E. Ben-Josef, J. D. Taylor, A. T. Porter, and D. G. Tang
Apoptosis Induction by a Novel Anti-Prostate Cancer Compound, BMD188 (a Fatty Acid-containing Hydroxamic Acid), Requires the Mitochondrial Respiratory Chain
Cancer Res., September 1, 1999; 59(17): 4343 - 4355.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
C. B. Ambrosone, J. L. Freudenheim, P. A. Thompson, E. Bowman, J. E. Vena, J. R. Marshall, S. Graham, R. Laughlin, T. Nemoto, and P. G. Shields
Manganese Superoxide Dismutase (MnSOD) Genetic Polymorphisms, Dietary Antioxidants, and Risk of Breast Cancer
Cancer Res., February 1, 1999; 59(3): 602 - 606.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1997 by the American Association of Cancer Research.