CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Cockerill, P. N.
Right arrow Articles by Grotto, R. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Cockerill, P. N.
Right arrow Articles by Grotto, R. J.

Cell Growth & Differentiation, Vol 7, Issue 7 917-922, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Regulation of GM-CSF gene transcription by core-binding factor

PN Cockerill, CS Osborne, AG Bert and RJ Grotto
Division of Human Immunology, Hanson Centre For Cancer Research, Institute for Medical and Veterinary Science, Adelaide, Australia.

GM-CSF gene activation in T cells is known to involve the transcription factors nuclear factor-kappa B, AP-1, NFAT, and Sp1. Here we demonstrate that the human GM-CSF promoter and enhancer also encompass binding sites for core-binding factor (CBF). Significantly, the CBF sites are in each case contained within the minimum essential core regions required for inducible activation of transcription. Furthermore, these core regions of the enhancer and promoter each encompass closely linked binding sites for CBF, AP-1, and NFATp. The GM-CSF promoter CBF site TGTGGTCA is located 51 bp upstream of the transcription start site and also overlaps a YY-1 binding site. A 2-bp mutation within the CBF site resulted in a 2-3-fold decrease in the activities of both a 69-bp proximal promoter fragment and a 627-bp full-length promoter fragment. Stepwise deletions into the proximal promoter also revealed that the CBF site, but not the YY-1 site, was required for efficient induction of transcriptional activation. The AML1 and CBF beta genes that encode CBF each have the ability to influence cell growth and differentiation and have been implicated as proto-oncogenes in acute myeloid leukemia. This study adds GM-CSF to a growing list of cytokines and receptors that are regulated by CBF and which control the growth, differentiation, and activation of hemopoietic cells. The GM-CSF locus may represent one of several target genes that are dysregulated in acute myeloid leukemia.


This article has been cited by other articles:


Home page
Clin. Cancer Res.Home page
S.-C. Tsai, L.-Y. Shih, S.-T. Liang, Y.-J. Huang, M.-C. Kuo, C.-F. Huang, Y.-S. Shih, T.-H. Lin, M.-C. Chiu, and D.-C. Liang
Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes
Clin. Cancer Res., August 1, 2015; 21(15): 3541 - 3551.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
T. Hashidate, N. Murakami, M. Nakagawa, M. Ichikawa, M. Kurokawa, T. Shimizu, and M. Nakamura
AML1 enhances the expression of leukotriene B4 type-1 receptor in leukocytes
FASEB J, September 1, 2010; 24(9): 3500 - 3510.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Yao, J.-w. Hwang, J. Moscat, M. T. Diaz-Meco, M. Leitges, N. Kishore, X. Li, and I. Rahman
Protein Kinase C{zeta} Mediates Cigarette Smoke/Aldehyde- and Lipopolysaccharide-induced Lung Inflammation and Histone Modifications
J. Biol. Chem., February 19, 2010; 285(8): 5405 - 5416.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. Ullah, N. Pelletier, L. Xiao, S. P. Zhao, K. Wang, C. Degerny, S. Tahmasebi, C. Cayrou, Y. Doyon, S.-L. Goh, et al.
Molecular Architecture of Quartet MOZ/MORF Histone Acetyltransferase Complexes
Mol. Cell. Biol., November 15, 2008; 28(22): 6828 - 6843.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
Y. Aikawa, L. A. Nguyen, K. Isono, N. Takakura, Y. Tagata, M. L. Schmitz, H. Koseki, and I. Kitabayashi
Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation
EMBO J., September 6, 2006; 25(17): 3955 - 3965.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
L. A. Nguyen, P. P. Pandolfi, Y. Aikawa, Y. Tagata, M. Ohki, and I. Kitabayashi
Physical and functional link of the leukemia-associated factors AML1 and PML
Blood, January 1, 2005; 105(1): 292 - 300.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y. Zhang, J. R. Biggs, and A. S. Kraft
Phorbol Ester Treatment of K562 Cells Regulates the Transcriptional Activity of AML1c through Phosphorylation
J. Biol. Chem., December 17, 2004; 279(51): 53116 - 53125.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
B. V. Johnson, A. G. Bert, G. R. Ryan, A. Condina, and P. N. Cockerill
Granulocyte-Macrophage Colony-Stimulating Factor Enhancer Activation Requires Cooperation between NFAT and AP-1 Elements and Is Associated with Extensive Nucleosome Reorganization
Mol. Cell. Biol., September 15, 2004; 24(18): 7914 - 7930.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
A. Hawwari, J. Burrows, M. A. Vadas, and P. N. Cockerill
The Human IL-3 Locus Is Regulated Cooperatively by Two NFAT-Dependent Enhancers That Have Distinct Tissue-Specific Activities
J. Immunol., August 15, 2002; 169(4): 1876 - 1886.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
J. Michaud, F. Wu, M. Osato, G. M. Cottles, M. Yanagida, N. Asou, K. Shigesada, Y. Ito, K. F. Benson, W. H. Raskind, et al.
In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis
Blood, February 15, 2002; 99(4): 1364 - 1372.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
A. G. Bert, J. Burrows, A. Hawwari, M. A. Vadas, and P. N. Cockerill
Reconstitution of T Cell-Specific Transcription Directed by Composite NFAT/Oct Elements
J. Immunol., November 15, 2000; 165(10): 5646 - 5655.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
A. Javed, B. Guo, S. Hiebert, J. Y. Choi, J. Green, S. C. Zhao, M. A. Osborne, S. Stifani, J. L. Stein, J. B. Lian, et al.
Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription
J. Cell Sci., June 15, 2000; 113(12): 2221 - 2231.
[Abstract] [PDF]


Home page
J Biol ChemHome page
L. S. Coles, P. Diamond, F. Occhiodoro, M. A. Vadas, and M. F. Shannon
An Ordered Array of Cold Shock Domain Repressor Elements across Tumor Necrosis Factor-responsive Elements of the Granulocyte-Macrophage Colony-stimulating Factor Promoter
J. Biol. Chem., May 12, 2000; 275(19): 14482 - 14493.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
P. N. Cockerill, A. G. Bert, D. Roberts, and M. A. Vadas
The human granulocyte-macrophage colony- stimulating factor gene is autonomously regulated in vivo by an inducible tissue-specific enhancer
PNAS, December 21, 1999; 96(26): 15097 - 15102.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.