HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |
Cell Growth & Differentiation, Vol 7, Issue 7 861-870, Copyright © 1996 by American Association of Cancer Research
ARTICLES |
KK Hirschi, CE Xu, T Tsukamoto and R Sager
Division of Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Normal human mammary epithelial cells express hcx43 and hCx26 proteins, which form functional gap junction channels. Both Cx genes are transcriptionally down-regulated in mammary carcinoma cell lines; consequently, no protein is made and gap junctions are absent. This result suggests that the loss of gap junctional communication may play an important role in carcinogenesis. To address this question, two sets of stable transfectants were produced in a recloned line of human mammary carcinoma cells (MDA-MB-435). One set expressed hCx26, and the other expressed hCx43. Studies of transfectants that contain functional gap junctions showed that they grew more slowly in culture than controls, and that their tumor-forming ability was strongly suppressed. In studies designed to examine their differentiation capacity, these transfectants were found to have regained the capacity to form three-dimensional structures in a matrigel matrix. This property is characteristic of normal mammary epithelial cells, but it is lost in the parental tumor cells and neo-transfectant controls. Thus, junctional communication is shown here to play a decisive role in the morphogenesis of mammary gland structures. The hCx26 and hCx43 genes behave as classical tumor suppressor genes both in culture and in animal tests in restoring growth regulatory properties to metastatic mammary carcinoma cells. Expression of these genes further induces the ability to differentiate as shown by the formation of three-dimensional structures when transfected cells are embedded in a matrigel matrix. These findings suggest that the reexpression of gap junctions may play a vital role in normalizing tumor cell behavior.
This article has been cited by other articles:
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. Bazzoun, H. A. Adissu, L. Wang, A. Urazaev, I. Tenvooren, S. F. Fostok, S. Chittiboyina, J. Sturgis, K. Hodges, G. Chandramouly, et al. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium J. Cell Sci., May 16, 2019; 132(10): jcs223313 - jcs223313. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. L. Jacobsen, T. K. Pontifex, H. Li, J. L. Solan, P. D. Lampe, P. L. Sorgen, and J. M. Burt Regulation of Cx37 channel and growth-suppressive properties by phosphorylation J. Cell Sci., October 1, 2017; 130(19): 3308 - 3321. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. J. Ableser, S. Penuela, J. Lee, Q. Shao, and D. W. Laird Connexin43 Reduces Melanoma Growth within a Keratinocyte Microenvironment and during Tumorigenesis in Vivo J. Biol. Chem., January 17, 2014; 289(3): 1592 - 1603. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. Poliseno Pseudogenes: Newly Discovered Players in Human Cancer Sci. Signal., September 18, 2012; 5(242): re5 - re5. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. Banerjee, S. Das, S. A. Molina, D. Madgwick, M. R. Katz, S. Jena, L. K. Bossmann, D. Pal, and D. J. Takemoto Investigation of the Reciprocal Relationship between the Expression of Two Gap Junction Connexin Proteins, Connexin46 and Connexin43 J. Biol. Chem., July 8, 2011; 286(27): 24519 - 24533. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() W.-C. Sin, M. Tse, N. Planque, B. Perbal, P. D. Lampe, and C. C. Naus Matricellular Protein CCN3 (NOV) Regulates Actin Cytoskeleton Reorganization J. Biol. Chem., October 23, 2009; 284(43): 29935 - 29944. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. OZAWA, H. MUTAI, T. MATSUNAGA, Y. TOKUMARU, M. FUJII, K. SAKAMOTO, T. TOMITA, and K. OGAWA Promoted Cell Proliferation by Connexin 30 Gene Transfection to Head-and-Neck Cancer Cell Line Anticancer Res, June 1, 2009; 29(6): 1981 - 1985. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Bier, I. Oviedo-Landaverde, J. Zhao, Y. Mamane, M. Kandouz, and G. Batist Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target Mol. Cancer Ther., April 1, 2009; 8(4): 786 - 793. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Y. Shen, P. R. Khusial, X. Li, H. Ichikawa, A. P. Moreno, and G. S. Goldberg Src Utilizes Cas to Block Gap Junctional Communication Mediated by Connexin43 J. Biol. Chem., June 29, 2007; 282(26): 18914 - 18921. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H. S. Duffy, I. Iacobas, K. Hotchkiss, B. J. Hirst-Jensen, A. Bosco, N. Dandachi, R. Dermietzel, P. L. Sorgen, and D. C. Spray The Gap Junction Protein Connexin32 Interacts with the Src Homology 3/Hook Domain of Discs Large Homolog 1 J. Biol. Chem., March 30, 2007; 282(13): 9789 - 9796. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. McLachlan, Q. Shao, H.-l. Wang, S. Langlois, and D. W. Laird Connexins Act as Tumor Suppressors in Three-dimensional Mammary Cell Organoids by Regulating Differentiation and Angiogenesis Cancer Res., October 15, 2006; 66(20): 9886 - 9894. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() P. Bedner, H. Niessen, B. Odermatt, M. Kretz, K. Willecke, and H. Harz Selective Permeability of Different Connexin Channels to the Second Messenger Cyclic AMP J. Biol. Chem., March 10, 2006; 281(10): 6673 - 6681. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Q. Shao, H. Wang, E. McLachlan, G. I.L. Veitch, and D. W. Laird Down-regulation of Cx43 by Retroviral Delivery of Small Interfering RNA Promotes an Aggressive Breast Cancer Cell Phenotype Cancer Res., April 1, 2005; 65(7): 2705 - 2711. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Jensen and P. M. Glazer Cell-interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gap junctions PNAS, April 20, 2004; 101(16): 6134 - 6139. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. Leithe and E. Rivedal Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43 J. Cell Sci., March 1, 2004; 117(7): 1211 - 1220. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. B. Alexander, H. Ichikawa, J. F. Bechberger, V. Valiunas, M. Ohki, C. C. G. Naus, T. Kunimoto, H. Tsuda, W. T. Miller, and G. S. Goldberg Normal Cells Control the Growth of Neighboring Transformed Cells Independent of Gap Junctional Communication and Src Activity Cancer Res., February 15, 2004; 64(4): 1347 - 1358. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() L. Lai, B. L. Bohnsack, K. Niederreither, and K. K. Hirschi Retinoic acid regulates endothelial cell proliferation during vasculogenesis Development, December 29, 2003; 130(26): 6465 - 6474. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J.-T. Chen, Y.-W. Cheng, M.-C. Chou, T. Sen-Lin, W.-W. Lai, W. L. Ho, and H. Lee The Correlation between Aberrant Connexin 43 mRNA Expression Induced by Promoter Methylation and Nodal Micrometastasis in Non-Small Cell Lung Cancer Clin. Cancer Res., September 15, 2003; 9(11): 4200 - 4204. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() K. K. Hirschi, J. M. Burt, K. D. Hirschi, and C. Dai Gap Junction Communication Mediates Transforming Growth Factor-{beta} Activation and Endothelial-Induced Mural Cell Differentiation , September 5, 2003; 93(5): 429 - 437. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. E. El-Sabban, A. J. Sfeir, M. H. Daher, N. Y. Kalaany, R. A. Bassam, and R. S. Talhouk ECM-induced gap junctional communication enhances mammary epithelial cell differentiation J. Cell Sci., September 1, 2003; 116(17): 3531 - 3541. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. P. Stains, F. Lecanda, J. Screen, D. A. Towler, and R. Civitelli Gap Junctional Communication Modulates Gene Transcription by Altering the Recruitment of Sp1 and Sp3 to Connexin-response Elements in Osteoblast Promoters J. Biol. Chem., June 27, 2003; 278(27): 24377 - 24387. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Oshima, T. Doi, K. Mitsuoka, S. Maeda, and Y. Fujiyoshi Roles of Met-34, Cys-64, and Arg-75 in the Assembly of Human Connexin 26: IMPLICATION FOR KEY AMINO ACID RESIDUES FOR CHANNEL FORMATION AND FUNCTION J. Biol. Chem., January 17, 2003; 278(3): 1807 - 1816. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Huang, Y. Lin, C. C. Wang, J. Gano, B. Lin, Q. Shi, A. Boynton, J. Burke, and R.-P. Huang Connexin 43 Suppresses Human Glioblastoma Cell Growth by Down-Regulation of Monocyte Chemotactic Protein 1, as Discovered Using Protein Array Technology Cancer Res., May 1, 2002; 62(10): 2806 - 2812. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Gudjonsson, L. Ronnov-Jessen, R. Villadsen, F. Rank, M. J. Bissell, and O. W. Petersen Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition J. Cell Sci., January 1, 2002; 115(1): 39 - 50. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. M. Saunders, M. J. Seraj, Z. Li, Z. Zhou, C. R. Winter, D. R. Welch, and H. J. Donahue Breast Cancer Metastatic Potential Correlates with a Breakdown in Homospecific and Heterospecific Gap Junctional Intercellular Communication Cancer Res., March 1, 2001; 61(5): 1765 - 1767. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. J. Sawey Role of Gap-Junctional Communication in Breast Cancer Progression and Chemoprevention J. Nutr., January 1, 2001; 131(1): 167S - 169. [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() G. S. Goldberg, J. F. Bechberger, Y. Tajima, M. Merritt, Y. Omori, M. A. Gawinowicz, R. Narayanan, Y. Tan, Y. Sanai, H. Yamasaki, et al. Connexin43 Suppresses MFG-E8 While Inducing Contact Growth Inhibition of Glioma Cells Cancer Res., November 1, 2000; 60(21): 6018 - 6026. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Mesnil and H. Yamasaki Bystander Effect in Herpes Simplex Virus-Thymidine Kinase/Ganciclovir Cancer Gene Therapy: Role of Gap-junctional Intercellular Communication1 Cancer Res., August 1, 2000; 60(15): 3989 - 3999. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Hsu, T. Andl, G. Li, J. L. Meinkoth, and M. Herlyn Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression J. Cell Sci., May 1, 2000; 113(9): 1535 - 1542. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H.-M. Chen, K. L. Schmeichel, I. S. Mian, S. Lelievre, O. W. Petersen, and M. J. Bissell AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression Mol. Biol. Cell, April 1, 2000; 11(4): 1357 - 1367. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() D. W. Laird, P. Fistouris, G. Batist, L. Alpert, H. T. Huynh, G. D. Carystinos, and M. A. Alaoui-Jamali Deficiency of Connexin43 Gap Junctions Is an Independent Marker for Breast Tumors Cancer Res., August 1, 1999; 59(16): 4104 - 4110. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B. J. Warn-Cramer, G. T. Cottrell, J. M. Burt, and A. F. Lau Regulation of Connexin-43 Gap Junctional Intercellular Communication by Mitogen-activated Protein Kinase J. Biol. Chem., April 10, 1998; 273(15): 9188 - 9196. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. G. Bevans, M. Kordel, S. K. Rhee, and A. L. Harris Isoform Composition of Connexin Channels Determines Selectivity among Second Messengers and Uncharged Molecules J. Biol. Chem., January 30, 1998; 273(5): 2808 - 2816. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() M. Statuto, C. Audebet, H. Tonoli, S. Selmi-Ruby, B. Rousset, and Y. Munari-Silem Restoration of Cell-to-Cell Communication in Thyroid Cell Lines by Transfection with and Stable Expression of the Connexin-32 Gene: IMPACT ON CELL PROLIFERATION AND TISSUE-SPECIFIC GENE EXPRESSION J. Biol. Chem., September 26, 1997; 272(39): 24710 - 24716. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J.-S. Kang, M. Gao, J. L. Feinleib, P. D. Cotter, S. N. Guadagno, and R. S. Krauss CDO: An Oncogene-, Serum-, and Anchorage-regulated Member of the Ig/Fibronectin Type III Repeat Family J. Cell Biol., July 14, 1997; 138(1): 203 - 213. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() H.-q. Xie, D. W. Laird, T.-H. Chang, and V. W. Hu A Mitosis-specific Phosphorylation of the Gap Junction Protein Connexin43 in Human Vascular Cells: Biochemical Characterization and Localization J. Cell Biol., April 7, 1997; 137(1): 203 - 210. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. Sager Expression genetics in cancer: Shifting the focus from DNA to RNA PNAS, February 4, 1997; 94(3): 952 - 955. [Abstract] [Full Text] [PDF] ![]() |
![]() |
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |