CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by North, S.
Right arrow Articles by Gillet, G.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by North, S.
Right arrow Articles by Gillet, G.

Cell Growth & Differentiation, Vol 7, Issue 3 339-349, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Two distinct regulatory elements control quail cdc2 transcription: possible involvement in the control of retinoblast differentiation

S North, X Espanel, B Tavitian, G Brun and G Gillet
UMR 49 CNRS, Ecole normale superieure de Lyon, France.

It is a characteristic of the central nervous system of higher eukaryotes that neurons, after an initial proliferation phase, remain postmitotic for their whole life span. In the developing quail neuroretina, most retinoblasts become postmitotic after 7-8 days of incubation. They also cease to express cdc2, which is presumably necessary to allow retinoblasts to definitively leave the cell cycle. The molecular mechanisms monitoring cdc2 expression during differentiation remain partly understood. To further study the control of cdc2 transcription in avian cells, we have cloned the quail cdc2 promoter. Two functional regulatory elements have been characterized. One of them contains an E2F-binding site. Human E2F-1 was found to transactivate the quail cdc2 promoter very efficiently in avian and human cells. Gel retardation experiments are presented, suggesting that E2F, in association with different partners, is a major regulatory of cdc2 transcription during the development of the neuroretina. Our data also indicate that another transcription factor binds to the octamer CAGGTGGC located 115 nucleotides above the main transcription start site. This motif is thus another important regulatory element participating in the control of cdc2 expression.





HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.