CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Mansour, S. J.
Right arrow Articles by Ahn, N. G.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Mansour, S. J.
Right arrow Articles by Ahn, N. G.

Cell Growth & Differentiation, Vol 7, Issue 2 243-250, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses

SJ Mansour, JM Candia, KK Gloor and NG Ahn
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA.

Both mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 function downstream of the proto-oncogene product Raf in signaling pathways that affect cell proliferation and differentiation. The isoforms were previously shown to be differentially regulated in two significant ways: (a) MAPKK1, but not MAPKK2, was phosphorylated and inactivated by the cyclin-dependent kinase p34cdc2; and (b) p21 Ras formed a ternary complex with Raf/MAPKK1 but not with Raf/MAPKK2. To further characterize the regulation and function of the two isoforms, we compared their mode of activation by v-Mos and examined the transcriptional and morphological responses that they mediate in cultured mammalian cells. v-Mos enhanced the enzymatic activity of both isoforms to the same extent, by about 600-fold. Constitutively active MAPKK2 mutants were generated by introducing the same deletion and amino acid substitutions that have been shown to activate MAPKK1, suggesting that the conformational changes that lead to their activation are analogous. These mutants potentiated transcription from a promoter containing AP1-responsive elements and induced morphological transformation when expressed in mammalian cells, matching outcomes observed with constitutively active MAPKK1. The specific activity of p42 MAPK in the transformed cells was 3-fold higher than in cells expressing wild-type MAPKK, thereby implicating p42 MAPK as a common effector in vivo, and suggesting that sustained activation of p42 MAPK may represent a critical factor that contributes to the development of the transformed state. Altogether, the results demonstrate that the two isoforms elicit similar responses in vivo despite differences in their regulation.


This article has been cited by other articles:


Home page
Clin. Cancer Res.Home page
M. E. Arcila, A. Drilon, B. E. Sylvester, C. M. Lovly, L. Borsu, B. Reva, M. G. Kris, D. B. Solit, and M. Ladanyi
MAP2K1 (MEK1) Mutations Define a Distinct Subset of Lung Adenocarcinoma Associated with Smoking
Clin. Cancer Res., April 15, 2015; 21(8): 1935 - 1943.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
S. Bhalla, A. M. Evens, B. Dai, S. Prachand, L. I. Gordon, and R. B. Gartenhaus
The novel anti-MEK small molecule AZD6244 induces BIM-dependent and AKT-independent apoptosis in diffuse large B-cell lymphoma
Blood, July 28, 2011; 118(4): 1052 - 1061.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
B. Dai, X. F. Zhao, P. Hagner, P. Shapiro, K. Mazan-Mamczarz, S. Zhao, Y. Natkunam, and R. B. Gartenhaus
Extracellular Signal-Regulated Kinase Positively Regulates the Oncogenic Activity of MCT-1 in Diffuse Large B-Cell Lymphoma
Cancer Res., October 1, 2009; 69(19): 7835 - 7843.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
Y. D. Shaul, G. Gibor, A. Plotnikov, and R. Seger
Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade
Genes & Dev., August 1, 2009; 23(15): 1779 - 1790.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
K. Maki and K. Ikuta
MEK1/2 Induces STAT5-Mediated Germline Transcription of the TCR{gamma} Locus in Response to IL-7R Signaling
J. Immunol., July 1, 2008; 181(1): 494 - 502.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
L. Sun, K. Ma, H. Wang, F. Xiao, Y. Gao, W. Zhang, K. Wang, X. Gao, N. Ip, and Z. Wu
JAK1 STAT1 STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts
J. Cell Biol., October 8, 2007; 179(1): 129 - 138.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. E. Schweppe, T. H. Cheung, and N. G. Ahn
Global Gene Expression Analysis of ERK5 and ERK1/2 Signaling Reveals a Role for HIF-1 in ERK5-mediated Responses
J. Biol. Chem., July 28, 2006; 281(30): 20993 - 21003.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
F. A. Scholl, P. A. Dumesic, and P. A. Khavari
Mek1 Alters Epidermal Growth and Differentiation
Cancer Res., September 1, 2004; 64(17): 6035 - 6040.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. T. Maliekal, R. J. Anto, and D. Karunagaran
Differential Activation of Smads in HeLa and SiHa Cells That Differ in Their Response to Transforming Growth Factor-{beta}
J. Biol. Chem., August 27, 2004; 279(35): 36287 - 36292.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. R. Sevinsky, A. M. Whalen, and N. G. Ahn
Extracellular Signal-Regulated Kinase Induces the Megakaryocyte GPIIb/CD41 Gene through MafB/Kreisler
Mol. Cell. Biol., May 15, 2004; 24(10): 4534 - 4545.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
B. E. Bobick and W. M. Kulyk
The MEK-ERK Signaling Pathway Is a Negative Regulator of Cartilage-specific Gene Expression in Embryonic Limb Mesenchyme
J. Biol. Chem., February 6, 2004; 279(6): 4588 - 4595.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y.-W. Lin, S.-M. Chuang, and J.-L. Yang
ERK1/2 Achieves Sustained Activation by Stimulating MAPK Phosphatase-1 Degradation via the Ubiquitin-Proteasome Pathway
J. Biol. Chem., June 6, 2003; 278(24): 21534 - 21541.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. S. Dhillon, S. Meikle, C. Peyssonnaux, J. Grindlay, C. Kaiser, H. Steen, P. E. Shaw, H. Mischak, A. Eychene, and W. Kolch
A Raf-1 Mutant That Dissociates MEK/Extracellular Signal-Regulated Kinase Activation from Malignant Transformation and Differentiation but Not Proliferation
Mol. Cell. Biol., March 15, 2003; 23(6): 1983 - 1993.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
A. Mauro, C. Ciccarelli, P. De Cesaris, A. Scoglio, M. Bouche, M. Molinaro, A. Aquino, and B. M. Zani
PKC{alpha}-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells
J. Cell Sci., September 15, 2002; 115(18): 3587 - 3599.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Cha, E. K. Lee, and P. Shapiro
Identification of a C-terminal Region That Regulates Mitogen-activated Protein Kinase Kinase-1 Cytoplasmic Localization and ERK Activation
J. Biol. Chem., December 21, 2001; 276(51): 48494 - 48501.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. D. Gross, A. L. Lewellyn, and J. L. Maller
A Constitutively Active Form of the Protein Kinase p90Rsk1 Is Sufficient to Trigger the G2/M Transition in Xenopus Oocytes
J. Biol. Chem., December 7, 2001; 276(49): 46099 - 46103.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
H. Cha and P. Shapiro
Tyrosine-Phosphorylated Extracellular Signal-Regulated Kinase Associates with the Golgi Complex during G2/M Phase of the Cell Cycle: Evidence for Regulation of Golgi Structure
J. Cell Biol., June 25, 2001; 153(7): 1355 - 1368.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
S. A. Walter, S. N. Guadagno, and J. E. Ferrell Jr.
Activation of Wee1 by p42 MAPK In Vitro and in Cycling Xenopus Egg Extracts
Mol. Biol. Cell, March 1, 2000; 11(3): 887 - 896.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
D. W. Abbott and J. T. Holt
Mitogen-activated Protein Kinase Kinase 2 Activation Is Essential for Progression through the G2/M Checkpoint Arrest in Cells Exposed to Ionizing Radiation
J. Biol. Chem., January 29, 1999; 274(5): 2732 - 2742.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
A. S. Zolotukhin and B. K. Felber
Nucleoporins Nup98 and Nup214 Participate in Nuclear Export of Human Immunodeficiency Virus Type 1 Rev
J. Virol., January 1, 1999; 73(1): 120 - 127.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. Dang, J. A. Frost, and M. H. Cobb
The MEK1 Proline-rich Insert Is Required for Efficient Activation of the Mitogen-activated Protein Kinases ERK1 and ERK2 in Mammalian Cells
J. Biol. Chem., July 31, 1998; 273(31): 19909 - 19913.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H.-Y. Lee, G. L. Walsh, M. I. Dawson, W. K. Hong, and J. M. Kurie
All-trans-Retinoic Acid Inhibits Jun N-terminal Kinase-dependent Signaling Pathways
J. Biol. Chem., March 20, 1998; 273(12): 7066 - 7071.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
P. S. Shapiro and N. G. Ahn
Feedback Regulation of Raf-1 and Mitogen-activated Protein Kinase (MAP) Kinase Kinases 1 and 2 by MAP Kinase Phosphatase-1 (MKP-1)
J. Biol. Chem., January 16, 1998; 273(3): 1788 - 1793.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Schramek, E. Feifel, E. Healy, and V. Pollack
Constitutively Active Mutant of the Mitogen-activated Protein Kinase Kinase MEK1 Induces Epithelial Dedifferentiation and Growth Inhibition in Madin-Darby Canine Kidney-C7 Cells
J. Biol. Chem., April 25, 1997; 272(17): 11426 - 11433.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
R. E. Cutler Jr and D. K. Morrison
Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila
EMBO J., April 15, 1997; 16(8): 1953 - 1960.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. J. Robinson, M. Cheng, A. Khokhlatchev, D. Ebert, N. Ahn, K.-L. Guan, B. Stein, E. Goldsmith, and M. H. Cobb
Contributions of the Mitogen-activated Protein (MAP) Kinase Backbone and Phosphorylation Loop to MEK Specificity
J. Biol. Chem., November 22, 1996; 271(47): 29734 - 29739.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.