CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Murakami, M.
Right arrow Articles by Rutka, J. T.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Murakami, M.
Right arrow Articles by Rutka, J. T.

Cell Growth & Differentiation, Vol 7, Issue 12 1697-1703, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Inducible expression of glial fibrillary acidic protein in HT-1080 human fibrosarcoma cells

M Murakami, K Fukuyama, S Hubbard, K Matsuzawa, PB Dirks and JT Rutka
Brain Tumor Research Laboratory, Hospital for Sick Children, University of Toronto, Ontario, Canada.

Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed almost exclusively by glial cells of the central nervous system. We have previously transfected GFAP-negative human astrocytoma cells with the gene for GFAP and have demonstrated that GFAP transfection decreases astrocytoma proliferation and alters astrocytoma morphology. To determine if the same cellular responses could be elicited upon GFAP transfection of nonglial tumor cells, in the present study we have transfected a GFAP-negative human malignant fibrosarcoma cell line (HT-1080) with a cDNA containing the entire coding sequence of the human GFAP gene under the control of an inducible metallothionein promoter. Stably transfected HT-1080 clones were identified that are GFAP-positive by PCR and immunocytochemistry. GFAP-positive HT-1080 fibrosarcoma cells also demonstrate a decrease in tumor cell proliferation, altered morphological features characterized by cell elongation and cytoplasmic process formation, and reduction of invasive potential when compared to controls. These findings suggest that the inducible expression of the cytoskeletal protein GFAP can also be associated with dramatic cellular effects in nonglial non-central nervous system tumor cells.





HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.