CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Vogel, W.
Right arrow Articles by Ullrich, A.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Vogel, W.
Right arrow Articles by Ullrich, A.

Cell Growth & Differentiation, Vol 7, Issue 12 1589-1597, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages binding to Grb2 via tyrosine 584

W Vogel and A Ullrich
Department of Molecular Biology, Max-Planck-Institut fur Blochemie, Martinsried, Germany. vogel@mshri.on.ca

SHP-2 (also named PTP1D, syp, or SH-PTP2) has been identified as a phosphotyrosine phosphatase comprising two src-homology-2 (SH2) domains. Upon growth factor stimulation, SHP-2 becomes tyrosine phosphorylated, thereby increasing its catalytic activity. Here, we identified SHP-2 to be phosphorylated on multiple tyrosine residues in response to different stimuli and unmasked the carboxyl-terminal tyrosine 584 as a major phosphorylation site in human cell lines. Tyrosine 584 shares, together with tyrosine 546, the consensus sequence pY-X-N-X, a characteristic of potential binding sites for the SH2 domain of growth factor receptor-bound protein 2 (Grb2). We show here that mutation of tyrosine 584, but not tyrosine 546, to phenylalanine totally abolished the binding of Grb2 to SHP-2. By using a systematic mutagenesis approach, phosphorylation of additional tyrosines in each of the SH2 domains of SHP-2 was detected after coexpression of epidermal growth factor receptor, but not after coexpression of platelet-derived growth factor receptor, whereas tyrosine 263 located in the interspace between SH2 and catalytic domain appears to be exclusively recognized by platelet-derived growth factor receptor. Immunoprecipitation of SHP-2 from a panel of mammary carcinoma cell lines copurifies several tyrosine phosphorylated proteins; the most prominent band has an apparent molecular weight of M(r) 115,000.


This article has been cited by other articles:


Home page
Proc. Natl. Acad. Sci. USAHome page
I. Louria-Hayon, C. Frelin, J. Ruston, G. Gish, J. Jin, M. M. Kofler, J.-P. Lambert, H. A. Adissu, M. Milyavsky, R. Herrington, et al.
Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling
PNAS, December 17, 2013; 110(51): 20599 - 20604.
[Abstract] [Full Text] [PDF]


Home page
Cold Spring Harb. Perspect. Biol.Home page
M. J. Wagner, M. M. Stacey, B. A. Liu, and T. Pawson
Molecular Mechanisms of SH2- and PTB-Domain-Containing Proteins in Receptor Tyrosine Kinase Signaling
Cold Spring Harb Perspect Biol, December 1, 2013; 5(12): a008987 - a008987.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
R. S. Mali, P. Ma, L.-F. Zeng, H. Martin, B. Ramdas, Y. He, E. Sims, S. Nabinger, J. Ghosh, N. Sharma, et al.
Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT
Blood, September 27, 2012; 120(13): 2669 - 2678.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. P. Nardozza, M. D'Orazio, R. Trapannone, S. Corallino, G. Filomeni, M. Tartaglia, A. Battistoni, G. Cesareni, and L. Castagnoli
Reactive Oxygen Species and Epidermal Growth Factor Are Antagonistic Cues Controlling SHP-2 Dimerization
Mol. Cell. Biol., May 15, 2012; 32(10): 1998 - 2009.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. A. Lucero, K. Ravid, J. L. Grimsby, C. B. Rich, S. J. DiCamillo, J. M. Maki, J. Myllyharju, and H. M. Kagan
Lysyl Oxidase Oxidizes Cell Membrane Proteins and Enhances the Chemotactic Response of Vascular Smooth Muscle Cells
J. Biol. Chem., August 29, 2008; 283(35): 24103 - 24117.
[Abstract] [Full Text] [PDF]


Home page
J. Leukoc. Biol.Home page
R. B. Walter, B. W. Raden, R. Zeng, P. Hausermann, I. D. Bernstein, and J. A. Cooper
ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2
J. Leukoc. Biol., January 1, 2008; 83(1): 200 - 211.
[Abstract] [Full Text] [PDF]


Home page
MCPHome page
O. Stoevesandt, K. Kohler, S. Wolf, T. Andre, W. Hummel, and R. Brock
A Network Analysis of Changes in Molecular Interactions in Cellular Signaling
Mol. Cell. Proteomics, March 1, 2007; 6(3): 503 - 513.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Araki, H. Nawa, and B. G. Neel
Tyrosyl Phosphorylation of Shp2 Is Required for Normal ERK Activation in Response to Some, but Not All, Growth Factors
J. Biol. Chem., October 24, 2003; 278(43): 41677 - 41684.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. R. Salomon, S. B. Ficarro, L. M. Brill, A. Brinker, Q. T. Phung, C. Ericson, K. Sauer, A. Brock, D. M. Horn, P. G. Schultz, et al.
Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry
PNAS, January 21, 2003; 100(2): 443 - 448.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
M. J. Cross, L. Lu, P. Magnusson, D. Nyqvist, K. Holmqvist, M. Welsh, and L. Claesson-Welsh
The Shb Adaptor Protein Binds to Tyrosine 766 in the FGFR-1 and Regulates the Ras/MEK/MAPK Pathway via FRS2 Phosphorylation in Endothelial Cells
Mol. Biol. Cell, August 1, 2002; 13(8): 2881 - 2893.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
H. W. H. G. Kessels, A. C. Ward, and T. N. M. Schumacher
Specificity and affinity motifs for Grb2 SH2-ligand interactions
PNAS, June 25, 2002; 99(13): 8524 - 8529.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. I. Kontaridis, X. Liu, L. Zhang, and A. M. Bennett
Role of SHP-2 in Fibroblast Growth Factor Receptor-Mediated Suppression of Myogenesis in C2C12 Myoblasts
Mol. Cell. Biol., June 1, 2002; 22(11): 3875 - 3891.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
C. R. Maroun, M. A. Naujokas, M. Holgado-Madruga, A. J. Wong, and M. Park
The Tyrosine Phosphatase SHP-2 Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase and Epithelial Morphogenesis Downstream from the Met Receptor Tyrosine Kinase
Mol. Cell. Biol., November 15, 2000; 20(22): 8513 - 8525.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. A. Ukropec, M. K. Hollinger, S. M. Salva, and M. J. Woolkalis
SHP2 Association with VE-Cadherin Complexes in Human Endothelial Cells Is Regulated by Thrombin
J. Biol. Chem., February 25, 2000; 275(8): 5983 - 5986.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
C. Li and J. M. Friedman
Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction
PNAS, August 17, 1999; 96(17): 9677 - 9682.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. C. Ward, L. Smith, J. P. de Koning, Y. van Aesch, and I. P. Touw
Multiple Signals Mediate Proliferation, Differentiation, and Survival from the Granulocyte Colony-stimulating Factor Receptor in Myeloid 32D Cells
J. Biol. Chem., May 21, 1999; 274(21): 14956 - 14962.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
K. Nakamura and J. C. Cambier
B Cell Antigen Receptor (BCR)-Mediated Formation of a SHP-2-pp120 Complex and Its Inhibition by Fe{gamma}RIIB1-BCR Coligation
J. Immunol., July 15, 1998; 161(2): 684 - 691.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
M. Gadina, L. M. Stancato, C. M. Bacon, A. C. Larner, and J. J. O'Shea
Cutting Edge: Involvement of SHP-2 in Multiple Aspects of IL-2 Signaling: Evidence for a Positive Regulatory Role
J. Immunol., May 15, 1998; 160(10): 4657 - 4661.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. M. OReilly and B. G. Neel
Structural Determinants of SHP-2 Function and Specificity in Xenopus Mesoderm Induction
Mol. Cell. Biol., January 1, 1998; 18(1): 161 - 177.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
S. Spencer, D. Dowbenko, J. Cheng, W. Li, J. Brush, S. Utzig, V. Simanis, and L. A. Lasky
PSTPIP: A Tyrosine Phosphorylated Cleavage Furrow-associated Protein that Is a Substrate for a PEST Tyrosine Phosphatase
J. Cell Biol., August 25, 1997; 138(4): 845 - 860.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. Liu, J. E. Damen, M. D. Ware, and G. Krystal
Interleukin-3 Induces the Association of the Inositol 5-Phosphatase SHIP with SHP2
J. Biol. Chem., April 25, 1997; 272(17): 10998 - 11001.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.