CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Malliri, A.
Right arrow Articles by Ozanne, B.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Malliri, A.
Right arrow Articles by Ozanne, B.

Cell Growth & Differentiation, Vol 7, Issue 10 1291-1304, Copyright © 1996 by American Association of Cancer Research


ARTICLES

Sensitivity to transforming growth factor beta 1-induced growth arrest is common in human squamous cell carcinoma cell lines: c-MYC down-regulation and p21waf1 induction are important early events

A Malliri, WA Yeudall, M Nikolic, DH Crouch, EK Parkinson and B Ozanne
CRC Beatson Laboratories, Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom.

Transforming growth factor beta 1 (TGF-beta 1) is a potent inhibitor of keratinocyte proliferation and a potential tumor suppressor of squamous cell carcinomas (SCCs). TGF-beta 1 exerts its antiproliferative effects by inhibiting key transitions required for progression from G1 to the S phase of the cell cycle, exemplified by a rapid reduction of c-MYC and inhibition of the G1 cyclin/cyclin-dependent kinases by induction of their inhibitors p21waf1, p27kip1, and p15INK4B. A significant majority of a new series of human SCC cell lines were found to be as sensitive as primary human epidermal keratinocytes to TGF-beta 1 growth inhibition. Only a minority of cell lines derived from late-stage tumors were resistant. An early and rapid increase in p21waf1 and reduction in c-MYC protein levels were important concomitants for TGF-beta 1 growth inhibition; these changes occurred exclusively in each of the sensitive cell lines. Expression of p15INK4B was found to be neither necessary nor sufficient for TGF-beta 1 growth arrest in the sensitive and resistant cell lines, respectively. TGF-beta 1 induced alterations in other cell cycle regulatory molecules, cyclin-dependent kinase 4, cyclin D1, pRB, and p27Kip1, occurred late and were dispensable in some of the sensitive cell lines. Expression of exogenous mycER fusion protein in one of the sensitive cell lines did not render the cells resistant to TGF-beta 1-induced growth arrest nor prevent p21waf1 induction or down-regulation of both c-MYC and mycER proteins. However, in TGF-beta 1-resistant subclones of sensitive mycER-expressing cells, p21waf1 was not induced, whereas both c-MYC and mycER protein levels decreased following TGF-beta 1 treatment. We conclude that TGF-beta 1 activates multiple cell cycle inhibitory pathways dependent upon p21waf1 induction and c-MYC degradation and that it does not function as a tumor suppressor in the majority of SCCs.


This article has been cited by other articles:


Home page
Cancer Res.Home page
E. Perez-Gomez, M. Villa-Morales, J. Santos, J. Fernandez-Piqueras, C. Gamallo, J. Dotor, C. Bernabeu, and M. Quintanilla
A Role for Endoglin as a Suppressor of Malignancy during Mouse Skin Carcinogenesis
Cancer Res., November 1, 2007; 67(21): 10268 - 10277.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
K. D. Hunter, J. K. Thurlow, J. Fleming, P. J.H. Drake, J. K. Vass, G. Kalna, D. J. Higham, P. Herzyk, D. G. MacDonald, E. K. Parkinson, et al.
Divergent routes to oral cancer.
Cancer Res., August 1, 2006; 66(15): 7405 - 7413.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
S.-H. Kim, J. Rowe, H. Fujii, R. Jones, B. Schmierer, B.-W. Kong, K. Kuchler, D. Foster, D. Ish-Horowicz, and G. Peters
Upregulation of chicken p15INK4b at senescence and in the developing brain
J. Cell Sci., June 15, 2006; 119(12): 2435 - 2443.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
X.-Z. Chi, J.-O. Yang, K.-Y. Lee, K. Ito, C. Sakakura, Q.-L. Li, H.-R. Kim, E.-J. Cha, Y.-H. Lee, A. Kaneda, et al.
RUNX3 Suppresses Gastric Epithelial Cell Growth by Inducing p21WAF1/Cip1 Expression in Cooperation with Transforming Growth Factor {beta}-Activated SMAD
Mol. Cell. Biol., September 15, 2005; 25(18): 8097 - 8107.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
J. S. Edmiston, W. A. Yeudall, T. D. Chung, and D. A. Lebman
Inability of Transforming Growth Factor-{beta} to Cause SnoN Degradation Leads to Resistance to Transforming Growth Factor-{beta}-Induced Growth Arrest in Esophageal Cancer Cells
Cancer Res., June 1, 2005; 65(11): 4782 - 4788.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Heart Circ. Physiol.Home page
A. Khanna
Concerted effect of transforming growth factor-{beta}, cyclin inhibitor p21, and c-myc on smooth muscle cell proliferation
Am J Physiol Heart Circ Physiol, February 6, 2004; 286(3): H1133 - H1140.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
P. M. Siegel, W. Shu, and J. Massague
Mad Upregulation and Id2 Repression Accompany Transforming Growth Factor (TGF)-{beta}-mediated Epithelial Cell Growth Suppression
J. Biol. Chem., September 12, 2003; 278(37): 35444 - 35450.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
K. E. Gordon, H. Ireland, M. Roberts, K. Steeghs, J. A. McCaul, D. G. MacDonald, and E. K. Parkinson
High Levels of Telomere Dysfunction Bestow a Selective Disadvantage During the Progression of Human Oral Squamous Cell Carcinoma
Cancer Res., January 15, 2003; 63(2): 458 - 467.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
B. Peng, J. B. Fleming, T. Breslin, A. M. Grau, S. Fojioka, J. L. Abbruzzese, D. B. Evans, D. Ayers, K. Wathen, T. Wu, et al.
Suppression of Tumorigenesis and Induction of p15ink4b by Smad4/DPC4 in Human Pancreatic Cancer Cells
Clin. Cancer Res., November 1, 2002; 8(11): 3628 - 3638.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Yagi, M. Furuhashi, H. Aoki, D. Goto, H. Kuwano, K. Sugamura, K. Miyazono, and M. Kato
c-myc Is a Downstream Target of the Smad Pathway
J. Biol. Chem., January 4, 2002; 277(1): 854 - 861.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Gastrointest. Liver Physiol.Home page
C. A. Bradham, E. Hatano, and D. A. Brenner
Dominant-negative TAK1 induces c-Myc and G0 exit in liver
Am J Physiol Gastrointest Liver Physiol, November 1, 2001; 281(5): G1279 - G1289.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. W. Blain and J. Massague
Different Sensitivity of the Transforming Growth Factor-{beta} Cell Cycle Arrest Pathway to c-Myc and MDM-2
J. Biol. Chem., October 13, 2000; 275(41): 32066 - 32070.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
G. F. Claassen and S. R. Hann
A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest
PNAS, August 15, 2000; 97(17): 9498 - 9503.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
M. Tan, Y. Wang, K. Guan, and Y. Sun
PTGF-beta , a type beta transforming growth factor (TGF-beta ) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway
PNAS, January 4, 2000; 97(1): 109 - 114.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
B. J. Warner, S. W. Blain, J. Seoane, and J. Massague
Myc Downregulation by Transforming Growth Factor beta Required for Activation of the p15Ink4b G1 Arrest Pathway
Mol. Cell. Biol., September 1, 1999; 19(9): 5913 - 5922.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. Iavarone and J. Massague
E2F and Histone Deacetylase Mediate Transforming Growth Factor beta  Repression of cdc25A during Keratinocyte Cell Cycle Arrest
Mol. Cell. Biol., January 1, 1999; 19(1): 916 - 922.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
A. Malliri, M. Symons, R. F. Hennigan, A. F.L. Hurlstone, R. F. Lamb, T. Wheeler, and B. W. Ozanne
The Transcription Factor AP-1 Is Required for EGF-induced Activation of Rho-like GTPases, Cytoskeletal Rearrangements, Motility, and In Vitro Invasion of A431 Cells
J. Cell Biol., November 16, 1998; 143(4): 1087 - 1099.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. W. Blain and J. Massague
Different Sensitivity of the Transforming Growth Factor-{beta} Cell Cycle Arrest Pathway to c-Myc and MDM-2
J. Biol. Chem., October 13, 2000; 275(41): 32066 - 32070.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
G. F. Claassen and S. R. Hann
A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest
PNAS, August 15, 2000; 97(17): 9498 - 9503.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1996 by the American Association of Cancer Research.