CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Hrzenjak, M.
Right arrow Articles by Shain, S. A.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Hrzenjak, M.
Right arrow Articles by Shain, S. A.

Cell Growth & Differentiation, Vol 6, Issue 9 1129-1142, Copyright © 1995 by American Association of Cancer Research


ARTICLES

Protein kinase C-dependent and -independent pathways of signal transduction in prostate cancer cells: fibroblast growth factor utilization of a protein kinase C-independent pathway

M Hrzenjak and SA Shain
Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio 78284-7836, USA.

To examine the possibility that differences in protein tyrosine phosphorylation contributed to differences in fibroblast growth factor (FGF) responsiveness of clonally derived C3 (modestly responsive) and T5 (highly responsive) rat prostate cancer cells, we evaluated the ability of orthovanadate to affect prostate cancer cell thymidine incorporation. These analyses showed that C3 cell FGF insensitivity was not attributable to enhanced protein phosphotyrosine phosphatase activity. Analyses of acidic FGF (aFGF)-mediated protein phosphorylation showed mitogen-caused, time-dependent tyrosine phosphorylation of C3 and T5 cell FGF receptors (FGFRs) and other proteins having a mass of 190, 150, 120, 100, 90, 80, 74, 60/62, 50, 42, or 28 kilodaltons. Although marked differences characterized aFGF mediated intensity of tyrosine phosphorylation, the notable commonality of tyrosine phosphorylation and the mass of the phosphorylated proteins suggested that C3 and T5 cells may use the ras and/or protein kinase C (PKC) pathways for FGF-mediated signal transduction. The PKC agonist 12-O-tetradecanoyl-phorbol-13-acetate (TPA) caused concentration-dependent increases in T5 cell thymidine incorporation. In contrast, TPA did not enhance thymidine incorporation of C3 cells or mitogen-sensitive NRK cells included as a nonneoplastic control. TPA also significantly enhanced T5 cell proliferation, whereas identical treatment did not affect proliferation of either C3 or NRK cells. Either 12 or 24 h treatment with 200 or 2000 ng/ml TPA caused complete PKC alpha and partial PKC delta down-regulation in C3, T5, and NRK cells. Consequently, the failure of TPA to affect C3 or NRK cell thymidine incorporation or proliferation was not attributable to potential TPA ineffectiveness in these cells. Survey immunological analyses showed that all three cell lines lacked PKC beta, PKC eta, and PKC theta. In contrast, T5 cells contained abundant amounts of PKC epsilon, whereas the PKC epsilon content of C3 and NRK cells was near the limit of detection. TPA treatment of T5 cells evoked only partial PKC epsilon down-regulation. Both aFGF and basic FGF (bFGF) promoted concentration-dependent enhancement of TPA-pretreated T5 cell thymidine incorporation, and the effects of combined TPA and either aFGF or bFGF treatment were additive. Neither aFGF nor bFGF was able to enhance thymidine incorporation of TPA-pretreated C3 cells beyond the modest effects elicited by FGF treatment of C3 controls.(ABSTRACT TRUNCATED AT 250 WORDS)


This article has been cited by other articles:


Home page
Mol Cancer ResHome page
S. A. Shain
Exogenous Fibroblast Growth Factors Maintain Viability, Promote Proliferation, and Suppress GADD45{alpha} and GAS6 Transcript Content of Prostate Cancer Cells Genetically Modified to Lack Endogenous FGF-2
Mol. Cancer Res., November 1, 2004; 2(11): 653 - 661.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1995 by the American Association of Cancer Research.