HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |
Cell Growth & Differentiation, Vol 6, Issue 7 817-825, Copyright © 1995 by American Association of Cancer Research
ARTICLES |
CA MacArthur, A Lawshe, DB Shankar, M Heikinheimo and GM Shackleford
Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
We previously identified Fgf-8 as a frequently activated gene in tumors from mouse mammary tumor virus-infected Wnt-1 transgenic mice, suggesting that Fgf-8 is a proto-oncogene. We further determined that multiple, secreted protein isoforms that differ at their mature amino termini are encoded by alternatively spliced mRNAs transcribed from the gene. We now present evidence that there are differences in the potency of NIH3T3 cell transformation displayed by three of the FGF (fibroblast growth factor)-8 isoforms. We find that stable transfection of a cDNA for the FGF-8b isoform leads to marked morphological transformation of NIH3T3 cells and rapid tumorigenicity of the transfected cells in nude mice. In contrast, transfection of a cDNA for the FGF-8a or FGF-8c isoform results in moderate morphological changes in the NIH3T3 cells, and the transfected cells are weakly tumorigenic in nude mice. All three transfections result in cells that express comparable amounts of Fgf-8 mRNA and that produce the FGF-8 protein isoforms. The morphological changes observed in NIH3T3 cells can be reproduced by the addition of recombinant FGF-8 protein isoforms to the culture medium. Therefore, these results indicate that there are differences in the potency of transformation of NIH3T3 cells by FGF-8 protein isoforms and suggest that these FGF-8 isoforms may have different in vivo functions.
This article has been cited by other articles:
![]() |
![]() |
![]() |
![]() |
![]() ![]() R. B. Fletcher, J. C. Baker, and R. M. Harland FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus Development, May 1, 2006; 133(9): 1703 - 1714. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. K. Olsen, J. Y.H. Li, C. Bromleigh, A. V. Eliseenkova, O. A. Ibrahimi, Z. Lao, F. Zhang, R. J. Linhardt, A. L. Joyner, and M. Mohammadi Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain Genes & Dev., January 15, 2006; 20(2): 185 - 198. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() N. Shimada, T. Ishii, T. Imada, K. Takaba, Y. Sasaki, K. Maruyama-Takahashi, Y. Maekawa-Tokuda, H. Kusaka, S. Akinaga, A. Tanaka, et al. A Neutralizing Anti-Fibroblast Growth Factor 8 Monoclonal Antibody Shows Potent Antitumor Activity against Androgen-Dependent Mouse Mammary Tumors In vivo Clin. Cancer Res., May 15, 2005; 11(10): 3897 - 3904. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Sato and H. Nakamura The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway Development, September 1, 2004; 131(17): 4275 - 4285. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() E. K. Park, N. Warner, Y.-S. Bong, D. Stapleton, R. Maeda, T. Pawson, and I. O. Daar Ectopic EphA4 Receptor Induces Posterior Protrusions via FGF Signaling in Xenopus Embryos Mol. Biol. Cell, April 1, 2004; 15(4): 1647 - 1655. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. Jaszai, F. Reifers, A. Picker, T. Langenberg, and M. Brand Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity Development, December 29, 2003; 130(26): 6611 - 6623. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() B.-M. Loo and M. Salmivirta Heparin/Heparan Sulfate Domains in Binding and Signaling of Fibroblast Growth Factor 8b J. Biol. Chem., September 6, 2002; 277(36): 32616 - 32623. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. Song, X. Wu, W. C. Powell, R. D. Cardiff, M. B. Cohen, R. T. Tin, R. J. Matusik, G. J. Miller, and P. Roy-Burman Fibroblast Growth Factor 8 Isoform b Overexpression in Prostate Epithelium: A New Mouse Model for Prostatic Intraepithelial Neoplasia Cancer Res., September 1, 2002; 62(17): 5096 - 5105. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Sato, I. Araki, and H. Nakamura Inductive signal and tissue responsiveness defining the tectum and the cerebellum Development, July 1, 2001; 128(13): 2461 - 2469. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() J. K. Ruohola, T. P. Viitanen, E. M. Valve, J. A. Seppanen, N. T. Loponen, J. J. Keskitalo, P. T. Lakkakorpi, and P. L. Harkonen Enhanced Invasion and Tumor Growth of Fibroblast Growth Factor 8b-overexpressing MCF-7 Human Breast Cancer Cells Cancer Res., May 1, 2001; 61(10): 4229 - 4237. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. Song, W. C. Powell, N. Kasahara, A. van Bokhoven, G. J. Miller, and P. Roy-Burman The Effect of Fibroblast Growth Factor 8, Isoform b, on the Biology of Prostate Carcinoma Cells and Their Interaction with Stromal Cells Cancer Res., December 1, 2000; 60(23): 6730 - 6736. [Abstract] [Full Text] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. Chellaiah, W. Yuan, M. Chellaiah, and D. M. Ornitz Mapping Ligand Binding Domains in Chimeric Fibroblast Growth Factor Receptor Molecules: MULTIPLE REGIONS DETERMINE LIGAND BINDING SPECIFICITY J. Biol. Chem., December 3, 1999; 274(49): 34785 - 34794. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A Liu, K Losos, and A. Joyner FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate Development, January 11, 1999; 126(21): 4827 - 4838. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() F. Lovicu and P. Overbeek Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice Development, January 9, 1998; 125(17): 3365 - 3377. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() Z. Poltorak, T. Cohen, R. Sivan, Y. Kandelis, G. Spira, I. Vlodavsky, E. Keshet, and G. Neufeld VEGF145, a Secreted Vascular Endothelial Growth Factor Isoform That Binds to Extracellular Matrix J. Biol. Chem., March 14, 1997; 272(11): 7151 - 7158. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() A. G. Blunt, A. Lawshe, M. L. Cunningham, M. L. Seto, D. M. Ornitz, and C. A. MacArthur Overlapping Expression and Redundant Activation of Mesenchymal Fibroblast Growth Factor (FGF) Receptors by Alternatively Spliced FGF-8 Ligands J. Biol. Chem., February 7, 1997; 272(6): 3733 - 3738. [Abstract] [Full Text] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() S. Lee, P. Danielian, B Fritzsch, and A. McMahon Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain Development, January 3, 1997; 124(5): 959 - 969. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() C. MacArthur, A Lawshe, J Xu, S Santos-Ocampo, M Heikinheimo, A. Chellaiah, and D. Ornitz FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development Development, January 11, 1995; 121(11): 3603 - 3613. [Abstract] [PDF] ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() T. Fukuchi-Shimogori and E. A. Grove Neocortex Patterning by the Secreted Signaling Molecule FGF8 Science, November 2, 2001; 294(5544): 1071 - 1074. [Abstract] [Full Text] [PDF] ![]() |
![]() |
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
Cancer Research | Clinical Cancer Research |
Cancer Epidemiology Biomarkers & Prevention | Molecular Cancer Therapeutics |
Molecular Cancer Research | Cell Growth & Differentiation |