CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by MacArthur, C. A.
Right arrow Articles by Shackleford, G. M.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by MacArthur, C. A.
Right arrow Articles by Shackleford, G. M.

Cell Growth & Differentiation, Vol 6, Issue 7 817-825, Copyright © 1995 by American Association of Cancer Research


ARTICLES

FGF-8 isoforms differ in NIH3T3 cell transforming potential

CA MacArthur, A Lawshe, DB Shankar, M Heikinheimo and GM Shackleford
Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

We previously identified Fgf-8 as a frequently activated gene in tumors from mouse mammary tumor virus-infected Wnt-1 transgenic mice, suggesting that Fgf-8 is a proto-oncogene. We further determined that multiple, secreted protein isoforms that differ at their mature amino termini are encoded by alternatively spliced mRNAs transcribed from the gene. We now present evidence that there are differences in the potency of NIH3T3 cell transformation displayed by three of the FGF (fibroblast growth factor)-8 isoforms. We find that stable transfection of a cDNA for the FGF-8b isoform leads to marked morphological transformation of NIH3T3 cells and rapid tumorigenicity of the transfected cells in nude mice. In contrast, transfection of a cDNA for the FGF-8a or FGF-8c isoform results in moderate morphological changes in the NIH3T3 cells, and the transfected cells are weakly tumorigenic in nude mice. All three transfections result in cells that express comparable amounts of Fgf-8 mRNA and that produce the FGF-8 protein isoforms. The morphological changes observed in NIH3T3 cells can be reproduced by the addition of recombinant FGF-8 protein isoforms to the culture medium. Therefore, these results indicate that there are differences in the potency of transformation of NIH3T3 cells by FGF-8 protein isoforms and suggest that these FGF-8 isoforms may have different in vivo functions.


This article has been cited by other articles:


Home page
Biol. Reprod.Home page
T. Elo, P. Sipila, E. Valve, P. Kujala, J. Toppari, M. Poutanen, and P. Harkonen
Fibroblast Growth Factor 8b Causes Progressive Stromal and Epithelial Changes in the Epididymis and Degeneration of the Seminiferous Epithelium in the Testis of Transgenic Mice
Biol Reprod, May 1, 2012; 86(5): 157 - 157.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Endocrinol. Metab.Home page
J.-M. Lin, K. E. Callon, J.-S. Lin, M. Watson, V. Empson, P. C. Tong, A. Grey, D. Naot, C. R. Green, I. R. Reid, et al.
Actions of fibroblast growth factor-8 in bone cells in vitro
Am J Physiol Endocrinol Metab, July 1, 2009; 297(1): E142 - E150.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
R. B. Fletcher, J. C. Baker, and R. M. Harland
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus
Development, May 1, 2006; 133(9): 1703 - 1714.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
S. K. Olsen, J. Y.H. Li, C. Bromleigh, A. V. Eliseenkova, O. A. Ibrahimi, Z. Lao, F. Zhang, R. J. Linhardt, A. L. Joyner, and M. Mohammadi
Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain
Genes & Dev., January 15, 2006; 20(2): 185 - 198.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
N. Shimada, T. Ishii, T. Imada, K. Takaba, Y. Sasaki, K. Maruyama-Takahashi, Y. Maekawa-Tokuda, H. Kusaka, S. Akinaga, A. Tanaka, et al.
A Neutralizing Anti-Fibroblast Growth Factor 8 Monoclonal Antibody Shows Potent Antitumor Activity against Androgen-Dependent Mouse Mammary Tumors In vivo
Clin. Cancer Res., May 15, 2005; 11(10): 3897 - 3904.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
T. Sato and H. Nakamura
The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway
Development, September 1, 2004; 131(17): 4275 - 4285.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
E. K. Park, N. Warner, Y.-S. Bong, D. Stapleton, R. Maeda, T. Pawson, and I. O. Daar
Ectopic EphA4 Receptor Induces Posterior Protrusions via FGF Signaling in Xenopus Embryos
Mol. Biol. Cell, April 1, 2004; 15(4): 1647 - 1655.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
J. Jaszai, F. Reifers, A. Picker, T. Langenberg, and M. Brand
Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity
Development, December 29, 2003; 130(26): 6611 - 6623.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
B.-M. Loo and M. Salmivirta
Heparin/Heparan Sulfate Domains in Binding and Signaling of Fibroblast Growth Factor 8b
J. Biol. Chem., September 6, 2002; 277(36): 32616 - 32623.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
Z. Song, X. Wu, W. C. Powell, R. D. Cardiff, M. B. Cohen, R. T. Tin, R. J. Matusik, G. J. Miller, and P. Roy-Burman
Fibroblast Growth Factor 8 Isoform b Overexpression in Prostate Epithelium: A New Mouse Model for Prostatic Intraepithelial Neoplasia
Cancer Res., September 1, 2002; 62(17): 5096 - 5105.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
T. Sato, I. Araki, and H. Nakamura
Inductive signal and tissue responsiveness defining the tectum and the cerebellum
Development, July 1, 2001; 128(13): 2461 - 2469.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
J. K. Ruohola, T. P. Viitanen, E. M. Valve, J. A. Seppanen, N. T. Loponen, J. J. Keskitalo, P. T. Lakkakorpi, and P. L. Harkonen
Enhanced Invasion and Tumor Growth of Fibroblast Growth Factor 8b-overexpressing MCF-7 Human Breast Cancer Cells
Cancer Res., May 1, 2001; 61(10): 4229 - 4237.
[Abstract] [Full Text]


Home page
Cancer Res.Home page
Z. Song, W. C. Powell, N. Kasahara, A. van Bokhoven, G. J. Miller, and P. Roy-Burman
The Effect of Fibroblast Growth Factor 8, Isoform b, on the Biology of Prostate Carcinoma Cells and Their Interaction with Stromal Cells
Cancer Res., December 1, 2000; 60(23): 6730 - 6736.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
A. Chellaiah, W. Yuan, M. Chellaiah, and D. M. Ornitz
Mapping Ligand Binding Domains in Chimeric Fibroblast Growth Factor Receptor Molecules: MULTIPLE REGIONS DETERMINE LIGAND BINDING SPECIFICITY
J. Biol. Chem., December 3, 1999; 274(49): 34785 - 34794.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
A Liu, K Losos, and A. Joyner
FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate
Development, January 11, 1999; 126(21): 4827 - 4838.
[Abstract] [PDF]


Home page
DevelopmentHome page
F. Lovicu and P. Overbeek
Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice
Development, January 9, 1998; 125(17): 3365 - 3377.
[Abstract] [PDF]


Home page
J Biol ChemHome page
Z. Poltorak, T. Cohen, R. Sivan, Y. Kandelis, G. Spira, I. Vlodavsky, E. Keshet, and G. Neufeld
VEGF145, a Secreted Vascular Endothelial Growth Factor Isoform That Binds to Extracellular Matrix
J. Biol. Chem., March 14, 1997; 272(11): 7151 - 7158.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. G. Blunt, A. Lawshe, M. L. Cunningham, M. L. Seto, D. M. Ornitz, and C. A. MacArthur
Overlapping Expression and Redundant Activation of Mesenchymal Fibroblast Growth Factor (FGF) Receptors by Alternatively Spliced FGF-8 Ligands
J. Biol. Chem., February 7, 1997; 272(6): 3733 - 3738.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
S. Lee, P. Danielian, B Fritzsch, and A. McMahon
Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain
Development, January 3, 1997; 124(5): 959 - 969.
[Abstract] [PDF]


Home page
DevelopmentHome page
C. MacArthur, A Lawshe, J Xu, S Santos-Ocampo, M Heikinheimo, A. Chellaiah, and D. Ornitz
FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development
Development, January 11, 1995; 121(11): 3603 - 3613.
[Abstract] [PDF]


Home page
ScienceHome page
T. Fukuchi-Shimogori and E. A. Grove
Neocortex Patterning by the Secreted Signaling Molecule FGF8
Science, November 2, 2001; 294(5544): 1071 - 1074.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1995 by the American Association of Cancer Research.