CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Seronie-Vivien, S.
Right arrow Articles by Favre, G.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Seronie-Vivien, S.
Right arrow Articles by Favre, G.

Cell Growth & Differentiation, Vol 6, Issue 11 1415-1423, Copyright © 1995 by American Association of Cancer Research


ARTICLES

Reversion of transformed phenotype of human adenocarcinoma A549 cells by expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase complementary DNA

S Seronie-Vivien, A Pradines, B Couderc, C Clamagirand, D Berg, G Soula and G Favre
Laboratoire de Ciblage en Therapeutique, UFR des Sciences Pharmaceutiques, Toulose, France.

3-Hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase) plays a rate-limiting role in isoprenoid biosynthesis and is associated with cell proliferation and transformation. Although an elevated level of HMG-CoA reductase activity is consistently detected in cancer cell lines and tumors, the question remains whether HMG-CoA reductase activity may have a causative role in cell transformation. We have stably transfected the A549 human adenocarcinoma cells with both bicistronic and retroviral expression vectors, including the whole cDNA of human HMG-CoA reductase. Stably transfected cells showed strong morphological changes and disorganization in the filamentous actin architecture, became contact inhibited, and had a lower doubling time. Moreover, they exhibited anchorage-independent growth reduction and lost their capability to induce tumors in nude mice. Surprisingly, no quantitative modification of enzyme activity was observed following transfection, although expression of HMG-CoA reductase cDNA was shown by Northern blot analysis. When endogenous and transfected reductase activity was bypassed by the addition of mevalonate and compactin, a competitive inhibitor, the filamentous actin distribution in HMG-CoA reductase-transfected cells became very similar to that of control cells, demonstrating the role of exogenous HMG-CoA reductase activity in this process. All of our data together strongly suggest that phenotype reversion is dependent on exogenous HMG-CoA reductase expression and that enzymatic activity is implied in this mechanism. HMG-CoA reductase cDNA expression, by expression of a particular form of reductase, might be a negative regulator of cell growth and thus reverse the phenotype of tumor cells.


This article has been cited by other articles:


Home page
Plant Physiol.Home page
A. Hemmerlin and T. J. Bach
Farnesol-Induced Cell Death and Stimulation of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Activity in Tobacco cv Bright Yellow-2 Cells
Plant Physiology, August 1, 2000; 123(4): 1257 - 1268.
[Abstract] [Full Text]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1995 by the American Association of Cancer Research.