CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Bernard, O.
Right arrow Articles by Dringen, R.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Bernard, O.
Right arrow Articles by Dringen, R.

Cell Growth & Differentiation, Vol 5, Issue 11 1159-1171, Copyright © 1994 by American Association of Cancer Research


ARTICLES

Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons

O Bernard, S Ganiatsas, G Kannourakis and R Dringen
Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia.

The olfactory epithelium is the only neuronal tissue capable of generating new neurons during adult life and hence must express genes responsible for this phenomenon. Therefore, we have used mRNA from immortalized olfactory epithelial cells to search for novel protein tyrosine kinases by polymerase chain reaction, using as primers conserved sequences from the catalytic domain of known kinase genes. A full-length complementary DNA clone corresponding to one such polymerase chain reaction product was isolated and sequenced. This complementary DNA, designated Kiz-1, encodes a protein containing two prominent domains; the NH2-terminal region contains a cysteine/histidine-rich moiety previously identified as a zinc-finger domain in proteins of the LIM family, while the COOH-terminus contains a kinase domain. Kiz-1 is expressed mainly in the brain of adult mice but also in a range of cultured cell lines, regardless of their tissue of origin. Immunohistochemical studies on adult mouse brain demonstrated that Kiz-1 is expressed exclusively in neurons, not in astrocytes or oligodendrocytes. In the developing embryo, however, Kiz-1 is expressed in all tissues. In COS cells transfected with Kiz-1 complementary DNA and in the immortalized olfactory epithelial cells, Kiz-1 was found mainly in the cytoplasm, but in neurons of the adult brain, it resided also in the nucleus. Two Kiz-1 mRNA species are expressed in cell lines as well as in the murine and human brain. One transcript lacks a region of 60 nucleotides, which lies within the catalytic domain of the kinase and is encoded by a separate exon. Our results suggest that Kiz-1 may play distinct roles in dividing cells and in differentiated neurons.


This article has been cited by other articles:


Home page
Mol. Cell. Biol.Home page
Z. Todorovski, S. Asrar, J. Liu, N. M. N. Saw, K. Joshi, M. A. Cortez, O. C. Snead III, W. Xie, and Z. Jia
LIMK1 Regulates Long-Term Memory and Synaptic Plasticity via the Transcriptional Factor CREB
Mol. Cell. Biol., April 15, 2015; 35(8): 1316 - 1328.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Q. Dong, Y.-S. Ji, C. Cai, and Z.-Y. Chen
LIM Kinase 1 (LIMK1) Interacts with Tropomyosin-related Kinase B (TrkB) and Mediates Brain-derived Neurotrophic Factor (BDNF)-induced Axonal Elongation
J. Biol. Chem., December 7, 2012; 287(50): 41720 - 41731.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
R. Li, J. Soosairajah, D. Harari, A. Citri, J. Price, H. L. Ng, C. J. Morton, M. W. Parker, Y. Yarden, and O. Bernard
Hsp90 increases LIM kinase activity by promoting its homo-dimerization
FASEB J, June 1, 2006; 20(8): 1218 - 1220.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Renal Physiol.Home page
M. V. Suurna, S. L. Ashworth, M. Hosford, R. M. Sandoval, S. E. Wean, B. M. Shah, J. R. Bamburg, and B. A. Molitoris
Cofilin mediates ATP depletion-induced endothelial cell actin alterations
Am J Physiol Renal Physiol, June 1, 2006; 290(6): F1398 - F1407.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Davila, A. R. Frost, W. E. Grizzle, and R. Chakrabarti
LIM Kinase 1 Is Essential for the Invasive Growth of Prostate Epithelial Cells: IMPLICATIONS IN PROSTATE CANCER
J. Biol. Chem., September 19, 2003; 278(38): 36868 - 36875.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
V. C. Foletta, M. A. Lim, J. Soosairajah, A. P. Kelly, E. G. Stanley, M. Shannon, W. He, S. Das, J. Massague, and O. Bernard
Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1
J. Cell Biol., September 15, 2003; 162(6): 1089 - 1098.
[Abstract] [Full Text] [PDF]


Home page
Physiol. Rev.Home page
C. G. Dos Remedios, D. Chhabra, M. Kekic, I. V. Dedova, M. Tsubakihara, D. A. Berry, and N. J. Nosworthy
Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments
Physiol Rev, April 1, 2003; 83(2): 433 - 473.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sumi, K. Matsumoto, A. Shibuya, and T. Nakamura
Activation of LIM Kinases by Myotonic Dystrophy Kinase-related Cdc42-binding Kinase {alpha}
J. Biol. Chem., June 22, 2001; 276(25): 23092 - 23096.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sumi, K. Matsumoto, and T. Nakamura
Specific Activation of LIM kinase 2 via Phosphorylation of Threonine 505 by ROCK, a Rho-dependent Protein Kinase
J. Biol. Chem., January 5, 2001; 276(1): 670 - 676.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Ohashi, K. Nagata, M. Maekawa, T. Ishizaki, S. Narumiya, and K. Mizuno
Rho-associated Kinase ROCK Activates LIM-kinase 1 by Phosphorylation at Threonine 508 within the Activation Loop
J. Biol. Chem., February 4, 2000; 275(5): 3577 - 3582.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
T. Sumi, K. Matsumoto, Y. Takai, and T. Nakamura
Cofilin Phosphorylation and Actin Cytoskeletal Dynamics Regulated by Rho- and Cdc42-Activated Lim-Kinase 2
J. Cell Biol., December 27, 1999; 147(7): 1519 - 1532.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
D. C. Edwards and G. N. Gill
Structural Features of LIM Kinase That Control Effects on the Actin Cytoskeleton
J. Biol. Chem., April 16, 1999; 274(16): 11352 - 11361.
[Abstract] [Full Text] [PDF]


Home page
Circ. Res.Home page
M. K. Jain, S. Kashiki, C.-M. Hsieh, M. D. Layne, S.-F. Yet, N. E. S. Sibinga, M. T. Chin, M. W. Feinberg, I. Woo, R. L. Maas, et al.
Embryonic Expression Suggests an Important Role for CRP2/SmLIM in the Developing Cardiovascular System
Circ. Res., November 16, 1998; 83(10): 980 - 985.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. Y. Wang, K. E. Frenzel, D. Wen, and D. L. Falls
Transmembrane Neuregulins Interact with LIM Kinase 1, a Cytoplasmic Protein Kinase Implicated in Development of Visuospatial Cognition
J. Biol. Chem., August 7, 1998; 273(32): 20525 - 20534.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S.-F. Yet, S. C. Folta, M. K. Jain, C.-M. Hsieh, K. Maemura, M. D. Layne, D. Zhang, P. B. Marria, M. Yoshizumi, M. T. Chin, et al.
Molecular Cloning, Characterization, and Promoter Analysis of the Mouse Crp2/SmLim Gene: PREFERENTIAL EXPRESSION OF ITS PROMOTER IN THE VASCULAR SMOOTH MUSCLE CELLS OF TRANSGENIC MICE
J. Biol. Chem., April 24, 1998; 273(17): 10530 - 10537.
[Abstract] [Full Text] [PDF]


Home page
J. Neurosci.Home page
G. L. Hinks, B. Shah, S. J. French, L. S. Campos, K. Staley, J. Hughes, and M. V. Sofroniew
Expression of LIM Protein Genes Lmo1, Lmo2, and Lmo3 in Adult Mouse Hippocampus and Other Forebrain Regions: Differential Regulation by Seizure Activity
J. Neurosci., July 15, 1997; 17(14): 5549 - 5559.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
I Bach, C Carriere, H P Ostendorff, B Andersen, and M G Rosenfeld
A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins.
Genes & Dev., June 1, 1997; 11(11): 1370 - 1380.
[Abstract] [PDF]


Home page
J Biol ChemHome page
M. K. Jain, K. P. Fujita, C.-M. Hsieh, W. O. Endege, N. E. S. Sibinga, S.-F. Yet, S. Kashiki, W.-S. Lee, M. A. Perrella, E. Haber, et al.
Molecular Cloning and Characterization of SmLIM, a Developmentally Regulated LIM Protein Preferentially Expressed in Aortic Smooth Muscle Cells
J. Biol. Chem., April 26, 1996; 271(17): 10194 - 10199.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
S Arber and P Caroni
Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ.
Genes & Dev., February 1, 1996; 10(3): 289 - 300.
[Abstract] [PDF]


Home page
J Biol ChemHome page
I. Okano, J. Hiraoka, H. Otera, K. Nunoue, K. Ohashi, S. Iwashita, M. Hirai, and K. Mizuno
Identification and Characterization of a Novel Family of Serine/Threonine Kinases Containing Two N-terminal LIM Motifs
J. Biol. Chem., December 29, 1995; 270(52): 31321 - 31330.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sumi, K. Matsumoto, A. Shibuya, and T. Nakamura
Activation of LIM Kinases by Myotonic Dystrophy Kinase-related Cdc42-binding Kinase {alpha}
J. Biol. Chem., June 22, 2001; 276(25): 23092 - 23096.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Sumi, K. Matsumoto, and T. Nakamura
Specific Activation of LIM kinase 2 via Phosphorylation of Threonine 505 by ROCK, a Rho-dependent Protein Kinase
J. Biol. Chem., January 5, 2001; 276(1): 670 - 676.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1994 by the American Association of Cancer Research.