CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Reisman, D.
Right arrow Articles by Rotter, V.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Reisman, D.
Right arrow Articles by Rotter, V.

Cell Growth & Differentiation, Vol 4, Issue 2 57-65, Copyright © 1993 by American Association of Cancer Research


ARTICLES

c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif

D Reisman, NB Elkind, B Roy, J Beamon and V Rotter
Department of Biological Sciences, University of South Carolina, Columbia 29208.

c-Myc and wild-type p53 have been shown to play important roles in the regulation of cellular proliferation and oncogenic transformation. We have previously shown that the p53 promoter contains a conserved consensus recognition sequence for the basic-helix-loop-helix-containing proteins, identical to the specific binding site for c-Myc/Max heterodimers. Here, we demonstrate that this element, which is required for full promoter activity, is bound by in vitro translated c-Myc/Max heterodimers. Furthermore, we found that in cotransfection assays, c-Myc trans-activates the p53 promoter as well as a hybrid herpes simplex virus-thymidine kinase promoter containing multiple copies of a synthetic p53-derived c-Myc binding site. The p53 promoter deleted of the basic-helix-loop-helix consensus recognition sequence is not trans-activated by c-Myc, thus suggesting that c-Myc trans-activates the p53 promoter through the basic-helix-loop-helix recognition motif. These findings raise the possibility that the p53 gene may be a potential target for trans-activation by c-Myc in vivo.


This article has been cited by other articles:


Home page
DevelopmentHome page
Q. Xiao, G. Zhang, H. Wang, L. Chen, S. Lu, D. Pan, G. Liu, and Z. Yang
A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration
Development, February 15, 2017; 144(4): 580 - 589.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
L. Chen, N. Iraci, S. Gherardi, L. D. Gamble, K. M. Wood, G. Perini, J. Lunec, and D. A. Tweddle
p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma
Cancer Res., February 15, 2010; 70(4): 1377 - 1388.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
D. Yu, M. Carroll, and A. Thomas-Tikhonenko
p53 status dictates responses of B lymphomas to monotherapy with proteasome inhibitors
Blood, June 1, 2007; 109(11): 4936 - 4943.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
K. D. Sutherland, F. Vaillant, W. S. Alexander, T. M. Wintermantel, N. C. Forrest, S. L. Holroyd, E. J. McManus, G. Schutz, C. J. Watson, L. A. Chodosh, et al.
c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3
EMBO J., December 13, 2006; 25(24): 5805 - 5815.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
M. Dose, I. Khan, Z. Guo, D. Kovalovsky, A. Krueger, H. von Boehmer, K. Khazaie, and F. Gounari
c-Myc mediates pre-TCR-induced proliferation but not developmental progression
Blood, October 15, 2006; 108(8): 2669 - 2677.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. Xiao, P. Jethanandani, B. L. Ziober, and R. H. Kramer
Regulation of {alpha}7 Integrin Expression during Muscle Differentiation
J. Biol. Chem., December 12, 2003; 278(50): 49780 - 49788.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. G. Harris, E. White, E. S. Phillips, and K. A. Lillycrop
The Expression of the Developmentally Regulated Proto-oncogenePax-3 Is Modulated by N-Myc
J. Biol. Chem., September 20, 2002; 277(38): 34815 - 34825.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Q. Yu, M. He, N. H. Lee, and E. T. Liu
Identification of Myc-mediated Death Response Pathways by Microarray Analysis
J. Biol. Chem., April 12, 2002; 277(15): 13059 - 13066.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J.-H. Sheen and R. B. Dickson
Overexpression of c-Myc Alters G1/S Arrest following Ionizing Radiation
Mol. Cell. Biol., March 15, 2002; 22(6): 1819 - 1833.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
S. Adachi, A. J. Obaya, Z. Han, N. Ramos-Desimone, J. H. Wyche, and J. M. Sedivy
c-Myc Is Necessary for DNA Damage-Induced Apoptosis in the G2 Phase of the Cell Cycle
Mol. Cell. Biol., August 1, 2001; 21(15): 4929 - 4937.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. L. Gartel, X. Ye, E. Goufman, P. Shianov, N. Hay, F. Najmabadi, and A. L. Tyner
Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3
PNAS, April 10, 2001; 98(8): 4510 - 4515.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
M. SHICHIRI and Y. HIRATA
Antiangiogenesis signals by endostatin
FASEB J, April 1, 2001; 15(6): 1044 - 1053.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
I. P. Pogribny, M. Pogribna, J. K. Christman, and S. J. James
Single-Site Methylation within the p53 Promoter Region Reduces Gene Expression in a Reporter Gene Construct: Possible in Vivo Relevance during Tumorigenesis
Cancer Res., February 1, 2000; 60(3): 588 - 594.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
M. Oren
Regulation of the p53 Tumor Suppressor Protein
J. Biol. Chem., December 17, 1999; 274(51): 36031 - 36034.
[Full Text] [PDF]


Home page
J Biol ChemHome page
T. K. Hale and A. W. Braithwaite
The Adenovirus Oncoprotein E1a Stimulates Binding of Transcription Factor ETF to Transcriptionally Activate thep53 Gene
J. Biol. Chem., August 20, 1999; 274(34): 23777 - 23786.
[Abstract] [Full Text] [PDF]


Home page
Cell Growth Differ.Home page
N. Planque, N. Turque, K. Opdecamp, M. Bailly, P. Martin, and S. Saule
Expression of the Microphthalmia-associated Basic Helix-Loop-Helix Leucine Zipper Transcription Factor Miin Avian Neuroretina Cells Induces aPigmented Phenotype
Cell Growth Differ., July 1, 1999; 10(7): 525 - 536.
[Abstract] [Full Text]


Home page
Mol. Cell. Biol.Home page
I. Ben-Porath, O. Yanuka, and N. Benvenisty
The Tmp Gene, Encoding a Membrane Protein, Is a c-Myc Target with a Tumorigenic Activity
Mol. Cell. Biol., May 1, 1999; 19(5): 3529 - 3539.
[Abstract] [Full Text] [PDF]


Home page
Circ. Res.Home page
K. Macdonald and M. R. Bennett
cdc25A Is Necessary but Not Sufficient for Optimal c-myc Induced Apoptosis and Cell Proliferation of Vascular Smooth Muscle Cells
Circ. Res., April 16, 1999; 84(7): 820 - 830.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
C. V. Dang
c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism
Mol. Cell. Biol., January 1, 1999; 19(1): 1 - 11.
[Full Text] [PDF]


Home page
Genes Dev.Home page
A. Bush, M. Mateyak, K. Dugan, A. Obaya, S. Adachi, J. Sedivy, and M. Cole
c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets
Genes & Dev., December 15, 1998; 12(24): 3797 - 3802.
[Abstract] [Full Text]


Home page
Genes Dev.Home page
Q. Xiao, G. Claassen, J. Shi, S. Adachi, J. Sedivy, and S. R. Hann
Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis
Genes & Dev., December 15, 1998; 12(24): 3803 - 3808.
[Abstract] [Full Text]


Home page
FASEB J.Home page
L. Facchini and L. Z. Penn
The molecular role of Myc in growth and transformation: recent discoveries lead to new insights
FASEB J, June 1, 1998; 12(9): 633 - 651.
[Abstract] [Full Text]


Home page
JEMHome page
M. Wu, R. E. Bellas, J. Shen, and G. E. Sonenshein
Roles of the Tumor Suppressor p53 and the Cyclin-dependent Kinase Inhibitor p21WAF1/CIP1 in Receptor-mediated Apoptosis of WEHI 231 B Lymphoma Cells
J. Exp. Med., May 18, 1998; 187(10): 1671 - 1679.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. Eden, G. Simchen, and N. Benvenisty
Two Yeast Homologs of ECA39, a Target for c-Myc Regulation, Code for Cytosolic and Mitochondrial Branched-chain Amino Acid Aminotransferases
J. Biol. Chem., August 23, 1996; 271(34): 20242 - 20245.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
F. Kohlhuber, H. Hermeking, A. Graessmann, and D. Eick
Induction of Apoptosis by the c-Myc Helix-Loop-Helix/Leucine Zipper Domain in Mouse 3T3-L1 Fibroblasts
J. Biol. Chem., December 1, 1995; 270(48): 28797 - 28805.
[Abstract] [Full Text] [PDF]


Home page
Circ. Res.Home page
M. R. Bennett, G. I. Evan, and S. M. Schwartz
Apoptosis of Rat Vascular Smooth Muscle Cells Is Regulated by p53-Dependent and -Independent Pathways
Circ. Res., August 1, 1995; 77(2): 266 - 273.
[Abstract] [Full Text]


Home page
Genes Dev.Home page
A J Wagner, J M Kokontis, and N Hay
Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1.
Genes & Dev., December 1, 1994; 8(23): 2817 - 2830.
[Abstract] [PDF]


Home page
Genes Dev.Home page
S R Hann, M Dixit, R C Sears, and L Sealy
The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site.
Genes & Dev., October 15, 1994; 8(20): 2441 - 2452.
[Abstract] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
P.J. Hurlin, D.E. Ayer, C. Grandori, and R.N. Eisenman
The Max Transcription Factor Network: Involvement of Mad in Differentiation and an Approach to Identification of Target Genes
Cold Spring Harb Symp Quant Biol, January 1, 1994; 59(0): 109 - 116.
[Abstract] [PDF]


Home page
Genes Dev.Home page
D E Ayer and R N Eisenman
A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation.
Genes & Dev., November 1, 1993; 7(11): 2110 - 2119.
[Abstract] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. L. Gartel, X. Ye, E. Goufman, P. Shianov, N. Hay, F. Najmabadi, and A. L. Tyner
Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3
PNAS, April 10, 2001; 98(8): 4510 - 4515.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1993 by the American Association of Cancer Research.