CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Crews, C. M.
Right arrow Articles by Erikson, R. L.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Crews, C. M.
Right arrow Articles by Erikson, R. L.

Cell Growth & Differentiation, Vol 3, Issue 2 135-142, Copyright © 1992 by American Association of Cancer Research


ARTICLES

Erks: their fifteen minutes has arrived

CM Crews, A Alessandrini and RL Erikson
Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.

In conclusion, a multigene family (ERK) encoding protein kinases that have the capacity to convert tyrosine kinase signals to serine/threonine phosphorylation signals has been identified in animal and yeast cells. Protein kinases from this family have been shown to be phosphorylated on tyrosine and threonine in response to mitogens, as well as to have the capacity to autophosphorylate on these amino acid residues. In contrast, they apparently phosphorylate exogenous substrates on serine and/or threonine. Studies with cultured cells, Xenopus, and sea star oocytes have furthered our understanding of possible functions of Erks in vivo. These enzymes respond immediately to extracellular signals and are involved in G0-G1 transition (cultured cells), as well as in the M phase of oocyte maturation (Xenopus and sea star oocytes). Their usage of MAPs as substrates in vivo suggests a possible role of Erks in microtubule reorganization. ERK-encoded protein kinases use c-Jun, EGF receptor, and Raf-1 as potential substrates and can also reactivate dephosphorylated S6 kinase in vitro. Taken together, these data suggest that these enzymes play an important role in relaying the mitogenic signal by phosphorylating down-stream kinases and specific transcriptional factors, as well as having possible feedback function in the process of signal transduction. The results from the study of the yeast enzymes are pertinent to Erk activation in cells with nonmitogenic responses described above. In such cases, Erk protein kinases may act directly or indirectly on cyclins to arrest division and permit differentiation. The pathways influenced by ERK-like gene products in animal and yeast cells suggest that, depending on the downstream targets of substrates, transcriptional changes in a particular cell may occur to drive the cell cycle or, alternatively, withdrawal from the cell cycle may lead to specific differentiation events.(ABSTRACT TRUNCATED AT 250 WORDS)


This article has been cited by other articles:


Home page
Mol. Biol. CellHome page
M. L. Mohan, A. Chatterjee, S. Ganapathy, S. Mukherjee, S. Srikanthan, G. P. Jolly, R. S. Anand, and S. V. N. Prasad
Noncanonical regulation of insulin-mediated ERK activation by phosphoinositide 3-kinase {gamma}
Mol. Biol. Cell, November 1, 2017; 28(22): 3112 - 3122.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Regul. Integr. Comp. Physiol.Home page
V. E. Vargas, K. M. Kaushal, T. R. Monau, D. A. Myers, and C. A. Ducsay
Extracellular signal-regulated kinases (ERK1/2) signaling pathway plays a role in cortisol secretion in the long-term hypoxic ovine fetal adrenal near term
Am J Physiol Regulatory Integrative Comp Physiol, April 15, 2013; 304(8): R636 - R643.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
R. Zennadi, E. J. Whalen, E. J. Soderblom, S. C. Alexander, J. W. Thompson, L. G. Dubois, M. A. Moseley, and M. J. Telen
Erythrocyte plasma membrane-bound ERK1/2 activation promotes ICAM-4-mediated sickle red cell adhesion to endothelium
Blood, February 2, 2012; 119(5): 1217 - 1227.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
K. P. Hoeflich, C. O'Brien, Z. Boyd, G. Cavet, S. Guerrero, K. Jung, T. Januario, H. Savage, E. Punnoose, T. Truong, et al.
In vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-Like Breast Cancer Models
Clin. Cancer Res., July 15, 2009; 15(14): 4649 - 4664.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
S. K. Creton, H. Zhu, and N. J. Gooderham
The Cooked Meat Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine Activates the Extracellular Signal Regulated Kinase Mitogen-Activated Protein Kinase Pathway
Cancer Res., December 1, 2007; 67(23): 11455 - 11462.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
N. Maeda, N. Kawada, S. Seki, T. Arakawa, K. Ikeda, H. Iwao, H. Okuyama, J. Hirabayashi, K.-i. Kasai, and K. Yoshizato
Stimulation of Proliferation of Rat Hepatic Stellate Cells by Galectin-1 and Galectin-3 through Different Intracellular Signaling Pathways
J. Biol. Chem., May 23, 2003; 278(21): 18938 - 18944.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
F. Ravandi, M. Talpaz, and Z. Estrov
Modulation of Cellular Signaling Pathways: Prospects for Targeted Therapy in Hematological Malignancies
Clin. Cancer Res., February 1, 2003; 9(2): 535 - 550.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Moelling, K. Schad, M. Bosse, S. Zimmermann, and M. Schweneker
Regulation of Raf-Akt Cross-talk
J. Biol. Chem., August 23, 2002; 277(34): 31099 - 31106.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Lung Cell. Mol. Physiol.Home page
J.-H. Lee, P. R. A. Johnson, M. Roth, N. H. Hunt, and J. L. Black
ERK activation and mitogenesis in human airway smooth muscle cells
Am J Physiol Lung Cell Mol Physiol, May 1, 2001; 280(5): L1019 - L1029.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Endocrinol. Metab.Home page
D. M. Pitterle, R. T. Sperling, M. G. Myers Jr., M. F. White, and P. J. Blackshear
Early biochemical events in insulin-stimulated fluid phase endocytosis
Am J Physiol Endocrinol Metab, January 1, 1999; 276(1): E94 - E105.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
M. R. Lackner and S. K. Kim
Genetic Analysis of the Caenorhabditis elegans MAP Kinase Gene mpk-1
Genetics, September 1, 1998; 150(1): 103 - 117.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. Lovric, S. Dammeier, A. Kieser, H. Mischak, and W. Kolch
Activated Raf Induces the Hyperphosphorylation of Stathmin and the Reorganization of the Microtubule Network
J. Biol. Chem., August 28, 1998; 273(35): 22848 - 22855.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
D. Michael, K. C. Martin, R. Seger, M.-M. Ning, R. Baston, and E. R. Kandel
Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia
PNAS, February 17, 1998; 95(4): 1864 - 1869.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
M. Hallek, P. Leif Bergsagel, and K. C. Anderson
Multiple Myeloma: Increasing Evidence for a Multistep Transformation Process
Blood, January 1, 1998; 91(1): 3 - 21.
[Full Text] [PDF]


Home page
J Biol ChemHome page
A. Alessandrini, H. Greulich, W. Huang, and R. L. Erikson
Mek1 Phosphorylation Site Mutants Activate Raf-1 in NIH 3T3 Cells
J. Biol. Chem., December 6, 1996; 271(49): 31612 - 31618.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
G. Fan, S. E. Merritt, M. Kortenjann, P. E. Shaw, and L. B. Holzman
Dual Leucine Zipper-bearing Kinase (DLK) Activates p46SAPK and p38mapk but Not ERK2
J. Biol. Chem., October 4, 1996; 271(40): 24788 - 24793.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. L. Johnson, S. Fenton, and L. G. Sheffield
Prolactin Inhibits Epidermal Growth Factor-induced Ras-MAPK Signaling in Mammary Epithelial Cells
J. Biol. Chem., August 30, 1996; 271(35): 21574 - 21578.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
B. A. Prins, M. J. Weber, R.-M. Hu, A. Pedram, M. Daniels, and E. R. Levin
Atrial Natriuretic Peptide Inhibits Mitogen-activated Protein Kinase through the Clearance Receptor: POTENTIAL ROLE IN THE INHIBITION OF ASTROCYTE PROLIFERATION
J. Biol. Chem., June 14, 1996; 271(24): 14156 - 14162.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
F. R. McKenzie and J. Pouyssegur
cAMP-mediated Growth Inhibition in Fibroblasts Is Not Mediated via Mitogen-activated Protein (MAP) Kinase (ERK) Inhibition: cAMP-DEPENDENT PROTEIN KINASE INDUCES A TEMPORAL SHIFT IN GROWTH FACTOR-STIMULATED MAP KINASES
J. Biol. Chem., June 7, 1996; 271(23): 13476 - 13483.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y. Wang and J. P. Durkin
{alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but Not N-Methyl-D-aspartate, Activates Mitogen-activated Protein Kinase through G-protein {beta}{gamma} Subunits in Rat Cortical Neurons
J. Biol. Chem., September 29, 1995; 270(39): 22783 - 22787.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C. L. Creasy and J. Chernoff
Cloning and Characterization of a Human Protein Kinase with Homology to Ste20
J. Biol. Chem., September 15, 1995; 270(37): 21695 - 21700.
[Abstract] [Full Text] [PDF]


Home page
Learn. Mem.Home page
Z Qian, M Gilbert, and E R Kandel
Temporal and spatial regulation of the expression of BAD2, a MAP kinase phosphatase, during seizure, kindling, and long-term potentiation.
Learn. Mem., January 1, 1994; 1(3): 180 - 188.
[Abstract] [PDF]


Home page
ScienceHome page
C. Crews, A Alessandrini, and R. Erikson
The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product
Science, October 16, 1992; 258(5081): 478 - 480.
[Abstract] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1992 by the American Association of Cancer Research.