CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Bhargava, M.
Right arrow Articles by Zarnegar, R.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Bhargava, M.
Right arrow Articles by Zarnegar, R.

Cell Growth & Differentiation, Vol 3, Issue 1 11-20, Copyright © 1992 by American Association of Cancer Research


ARTICLES

Scatter factor and hepatocyte growth factor: activities, properties, and mechanism

M Bhargava, A Joseph, J Knesel, R Halaban, Y Li, S Pang, I Goldberg, E Setter, MA Donovan and R Zarnegar
Division of Radiation Oncology, Long Island Jewish Medical Center, New Hyde Park, New York 11042.

Scatter factor (SF) was first identified as a fibroblast-derived protein which disperses (i.e., "scatters") cohesive colonies of epithelium. SF-like proteins were found in human smooth muscle cell conditioned medium, amniotic fluid, and placental tissue. SFs markedly stimulate migration of epithelial, carcinoma, and vascular endothelial cell types at picomolar concentrations. Hepatocyte growth factors (HGFs) were originally described as platelet- and serum-derived proteins which stimulate hepatocyte DNA synthesis. Partial amino acid sequence data for mouse and human SFs indicate significant homology with HGFs. We used biological, biochemical, and immunological assays to evaluate and compare the activities, properties, and mechanisms of action of mouse SF, human SF (fibroblast or placenta derived), and recombinant human HGF (hrHGF). We report the following findings: (a) mouse SF exhibits species-related differences in biological activities relative to the human factors; (b) human SF and hrHGF show significant overlap in biological activities (i.e., hrHGF stimulates motility of multiple normal and carcinoma cell types, whereas human SF stimulates DNA synthesis in several normal cell types); (c) the three factors contain common antigenic determinants; and (d) all three proteins stimulate rapid phosphorylation of tyrosine residues on the c-met protooncogene protein product (the putative receptor for HGF) and on another protein with Mr 110,000. A few biological and immunological differences between human SFs and hrHGF were observed. These may reflect minor variations in amino acid sequence or posttranslational modification related to the sources of the factors. Taken as a whole, our findings suggest that by structural, functional, immunological, and mechanistic criteria, human SF and human HGF are essentially identical.


This article has been cited by other articles:


Home page
Mol. Cell. Biol.Home page
T. A. Tran, H. S. Leong, A. Pavia-Jimenez, S. Fedyshyn, J. Yang, B. Kucejova, S. Sivanand, P. Spence, X.-J. Xie, S. Pena-Llopis, et al.
Fibroblast Growth Factor Receptor-Dependent and -Independent Paracrine Signaling by Sunitinib-Resistant Renal Cell Carcinoma
Mol. Cell. Biol., July 1, 2016; 36(13): 1836 - 1855.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
H. Cheng, M. Terai, K. Kageyama, S. Ozaki, P. A. McCue, T. Sato, and A. E. Aplin
Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma
Cancer Res., July 1, 2015; 75(13): 2737 - 2748.
[Abstract] [Full Text] [PDF]


Home page
Molecular Cancer TherapeuticsHome page
Y. Sano, E. Hashimoto, N. Nakatani, M. Abe, Y. Satoh, K. Sakata, T. Fujii, K. Fujimoto-Ouchi, M. Sugimoto, S. Nagahashi, et al.
Combining Onartuzumab with Erlotinib Inhibits Growth of Non-Small Cell Lung Cancer with Activating EGFR Mutations and HGF Overexpression
Mol. Cancer Ther., February 1, 2015; 14(2): 533 - 541.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Park, B.-S. Lee, S.-H. Jeon, H.-J. Nam, G. Lee, C.-H. Kim, H. Cho, and J.-H. Lee
A Novel Isoform of Met Receptor Tyrosine Kinase Blocks Hepatocyte Growth Factor/Met Signaling and Stimulates Skeletal Muscle Cell Differentiation
J. Biol. Chem., January 16, 2015; 290(3): 1804 - 1817.
[Abstract] [Full Text] [PDF]


Home page
J. Leukoc. Biol.Home page
P.-M. Chen, K.-J. Liu, P.-J. Hsu, C.-F. Wei, C.-H. Bai, L.-J. Ho, H.-K. Sytwu, and B. L. Yen
Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2
J. Leukoc. Biol., August 1, 2014; 96(2): 295 - 303.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
M. Merchant, X. Ma, H. R. Maun, Z. Zheng, J. Peng, M. Romero, A. Huang, N.-y. Yang, M. Nishimura, J. Greve, et al.
Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent
PNAS, August 6, 2013; 110(32): E2987 - E2996.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
H. A. Brauer, L. Makowski, K. A. Hoadley, P. Casbas-Hernandez, L. J. Lang, E. Roman-Perez, M. D'Arcy, A. J. Freemerman, C. M. Perou, and M. A. Troester
Impact of Tumor Microenvironment and Epithelial Phenotypes on Metabolism in Breast Cancer
Clin. Cancer Res., February 1, 2013; 19(3): 571 - 585.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
E. Singhal, P. Kumar, and P. Sen
A Novel Role for Bruton's Tyrosine Kinase in Hepatocyte Growth Factor-mediated Immunoregulation of Dendritic Cells
J. Biol. Chem., September 16, 2011; 286(37): 32054 - 32063.
[Abstract] [Full Text] [PDF]


Home page
Am J Trop Med HygHome page
H.-C. Tsai, Y.-L. Huang, Y.-C. Liu, S.-R. Wann, S. S.-J. Lee, E.-R. Chen, C.-M. Yen, M.-H. Tai, M.-H. Shi, and Y.-S. Chen
Dynamic Changes of Hepatocyte Growth Factor in Eosinophilic Meningitis Caused by Angiostrongylus cantonensis Infection
Am J Trop Med Hyg, June 1, 2009; 80(6): 980 - 982.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
H. Jin, R. Yang, Z. Zheng, M. Romero, J. Ross, H. Bou-Reslan, R. A.D. Carano, I. Kasman, E. Mai, J. Young, et al.
MetMAb, the One-Armed 5D5 Anti-c-Met Antibody, Inhibits Orthotopic Pancreatic Tumor Growth and Improves Survival
Cancer Res., June 1, 2008; 68(11): 4360 - 4368.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
K. J. Kim, L. Wang, Y.-C. Su, G. Y. Gillespie, A. Salhotra, B. Lal, and J. Laterra
Systemic Anti-Hepatocyte Growth Factor Monoclonal Antibody Therapy Induces the Regression of Intracranial Glioma Xenografts
Clin. Cancer Res., February 15, 2006; 12(4): 1292 - 1298.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. Muller, A. Morotti, and C. Ponzetto
Activation of NF-{kappa}B Is Essential for Hepatocyte Growth Factor-Mediated Proliferation and Tubulogenesis
Mol. Cell. Biol., February 15, 2002; 22(4): 1060 - 1072.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
R. Wang, L. D. Ferrell, S. Faouzi, J. J. Maher, and J. M. Bishop
Activation of the Met Receptor by Cell Attachment Induces and Sustains Hepatocellular Carcinomas in Transgenic Mice
J. Cell Biol., May 28, 2001; 153(5): 1023 - 1034.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
D. C. Bowers, S. Fan, K. A. Walter, R. Abounader, J. A. Williams, E. M. Rosen, and J. Laterra
Scatter Factor/Hepatocyte Growth Factor Protects against Cytotoxic Death in Human Glioblastoma via Phosphatidylinositol 3-Kinase- and AKT-dependent Pathways
Cancer Res., August 1, 2000; 60(15): 4277 - 4283.
[Abstract] [Full Text]


Home page
Am. J. Physiol. Gastrointest. Liver Physiol.Home page
R. E. Carroll, K. A. Matkowskyj, S. Chakrabarti, T. J. McDonald, and R. V. Benya
Aberrant expression of gastrin-releasing peptide and its receptor by well-differentiated colon cancers in humans
Am J Physiol Gastrointest Liver Physiol, March 1, 1999; 276(3): G655 - G665.
[Abstract] [Full Text] [PDF]


Home page
CirculationHome page
K. Ono, A. Matsumori, T. Shioi, Y. Furukawa, and S. Sasayama
Enhanced Expression of Hepatocyte Growth Factor/c-Met by Myocardial Ischemia and Reperfusion in a Rat Model
Circulation, June 3, 1997; 95(11): 2552 - 2558.
[Abstract] [Full Text]


Home page
J. Cell Sci.Home page
J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano
Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells
J. Cell Sci., February 1, 1995; 108(2): 413 - 430.
[Abstract] [PDF]


Home page
J. Cell Sci.Home page
P. Clark
Modulation of scatter factor/hepatocyte growth factor activity by cell-substratum adhesion
J. Cell Sci., May 1, 1994; 107(5): 1265 - 1275.
[Abstract] [PDF]


Home page
ScienceHome page
I Tsarfaty, S Rong, J. Resau, S Rulong, P. da Silva, and G. Vande Woude
The Met proto-oncogene mesenchymal to epithelial cell conversion
Science, January 7, 1994; 263(5143): 98 - 101.
[Abstract] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
S. Rong and G.F. Vande Woude
Autocrine Mechanism for met Proto-oncogene Tumorigenicity
Cold Spring Harb Symp Quant Biol, January 1, 1994; 59(0): 629 - 636.
[Abstract] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1992 by the American Association of Cancer Research.