CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Anderson, D. M.
Right arrow Articles by Cosman, D.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Anderson, D. M.
Right arrow Articles by Cosman, D.

Cell Growth & Differentiation, Vol 2, Issue 8 373-378, Copyright © 1991 by American Association of Cancer Research


ARTICLES

Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24

DM Anderson, DE Williams, R Tushinski, S Gimpel, J Eisenman, LA Cannizzaro, M Aronson, CM Croce, K Huebner and D Cosman
Department of Molecular Biology, Immunex Research and Development Corporation, Seattle, Washington 98101.

Human mast cell growth factor (MGF) complementary DNAs (cDNAs) were cloned from HeLa cells using the polymerase chain reaction with oligonucleotides corresponding to murine and human MGF sequences. Sequencing of the cloned human MGF polymerase chain reaction products revealed two types of cDNA: a full length form corresponding in size to the murine cDNA, and an alternately spliced clone with a deletion of the sixth exon of the gene. Since membrane-bound MGF is predicted to be proteolytically cleaved within the sequences encoded by exon 6 to generate a soluble protein, this alternately spliced cDNA would likely encode a noncleavable, membrane-bound form of MGF. No difference in biological activity on human bone marrow cells was observed with recombinant, soluble forms of both types of human MGF protein. Our previous localization of the murine MGF gene to the Sl locus on chromosome 10 suggested (via conserved linkage groups) that the human MGF gene would be located on human chromosome 12. Therefore, rodent-human somatic cell hybrids with or without an entire human chromosome 12 and hybrids retaining partial 12 were tested by Southern blot analysis and used to show the presence of the human Mgf locus at chromosome region 12q. Chromosomal in situ hybridization localized the gene to 12q22-q24 in the region predicted by the comparative mapping of the murine Mgf/Sl locus.


This article has been cited by other articles:


Home page
Am. J. Physiol. Heart Circ. Physiol.Home page
C. A. Drummond, M. Sayed, K. L. Evans, H. Shi, X. Wang, S. T. Haller, J. Liu, C. J. Cooper, Z. Xie, J. I. Shapiro, et al.
Reduction of Na/K-ATPase affects cardiac remodeling and increases c-kit cell abundance in partial nephrectomized mice
Am J Physiol Heart Circ Physiol, June 15, 2014; 306(12): H1631 - H1643.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
F. Ugarte and E. C. Forsberg
Haematopoietic stem cell niches: new insights inspire new questions
EMBO J., October 2, 2013; 32(19): 2535 - 2547.
[Abstract] [Full Text] [PDF]


Home page
Physiol. Rev.Home page
J. Lennartsson and L. Ronnstrand
Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications
Physiol Rev, October 1, 2012; 92(4): 1619 - 1649.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
F. Kuonen, J. Laurent, C. Secondini, G. Lorusso, J.-C. Stehle, T. Rausch, E. Faes-van't Hull, G. Bieler, G.-C. Alghisi, R. Schwendener, et al.
Inhibition of the Kit Ligand/c-Kit Axis Attenuates Metastasis in a Mouse Model Mimicking Local Breast Cancer Relapse after Radiotherapy
Clin. Cancer Res., August 15, 2012; 18(16): 4365 - 4374.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
M. A. Brehm, W. J. Racki, J. Leif, L. Burzenski, V. Hosur, A. Wetmore, B. Gott, M. Herlihy, R. Ignotz, R. Dunn, et al.
Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2r{gamma}null mice is enhanced by transgenic expression of membrane-bound human SCF
Blood, March 22, 2012; 119(12): 2778 - 2788.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
W. Zhang, G. Stoica, S. I. Tasca, K. A. Kelly, and C. J. Meininger
Modulation of Tumor Angiogenesis by Stem Cell Factor
Cancer Res., December 1, 2000; 60(23): 6757 - 6762.
[Abstract] [Full Text]


Home page
Mol. Pharmacol.Home page
O. Kassel, F. Schmidlin, C. Duvernelle, F. de Blay, and N. Frossard
Up- and Down-Regulation by Glucocorticoids of the Constitutive Expression of the Mast Cell Growth Factor Stem Cell Factor by Human Lung Fibroblasts in Culture
Mol. Pharmacol., December 1, 1998; 54(6): 1073 - 1079.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
J. Povey, N. Weeratunge, C. Marden, A. Sehgal, A. Thrasher, and C. Casimir
Enhanced Retroviral Transduction of 5-Fluorouracil-Resistant Human Bone Marrow (Stem) Cells Using a Genetically Modified Packaging Cell Line
Blood, December 1, 1998; 92(11): 4080 - 4089.
[Abstract] [Full Text] [PDF]


Home page
JEMHome page
T. Kunisada, S.-Z. Lu, H. Yoshida, S. Nishikawa, S.-i. Nishikawa, M. Mizoguchi, S.-i. Hayashi, L. Tyrrell, D. A. Williams, X. Wang, et al.
Murine Cutaneous Mastocytosis and Epidermal Melanocytosis Induced by Keratinocyte Expression of Transgenic Stem Cell Factor
J. Exp. Med., May 18, 1998; 187(10): 1565 - 1573.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
S. D. Lyman and S. E. W. Jacobsen
c-kit Ligand and Flt3 Ligand: Stem/Progenitor Cell Factors With Overlapping Yet Distinct Activities
Blood, February 15, 1998; 91(4): 1101 - 1134.
[Full Text] [PDF]


Home page
BloodHome page
V. C. Broudy
Stem Cell Factor and Hematopoiesis
Blood, August 15, 1997; 90(4): 1345 - 1364.
[Full Text] [PDF]


Home page
Genes Dev.Home page
C I Brannan, M A Bedell, J L Resnick, J J Eppig, M A Handel, D E Williams, S D Lyman, P J Donovan, N A Jenkins, and N G Copeland
Developmental abnormalities in Steel17H mice result from a splicing defect in the steel factor cytoplasmic tail.
Genes & Dev., October 1, 1992; 6(10): 1832 - 1842.
[Abstract] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1991 by the American Association of Cancer Research.