CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Coppola, J.
Right arrow Articles by Barbacid, M.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Coppola, J.
Right arrow Articles by Barbacid, M.

Cell Growth & Differentiation, Vol 2, Issue 2 95-105, Copyright © 1991 by American Association of Cancer Research


ARTICLES

Mechanism of activation of the vav protooncogene

J Coppola, S Bryant, T Koda, D Conway and M Barbacid
Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543.

vav is a human locus that appears to be specifically expressed in cells of hematopoietic origin regardless of their differentiation lineage. This gene was first identified as a result of its malignant activation during the course of gene transfer assays (Katzav, S., Martin-Zanca, D., and Barbacid, M. EMBO J., 8: 2283-2290, 1989). In this study, we report the isolation of complementary DNA clones containing the entire coding sequence of the mouse vav protooncogene. Antisera raised against a peptide corresponding to a predicted hydrophilic domain have allowed us to identify the product of the vav gene as a 95,000 Da protein. Analysis of the deduced amino acid sequence of p95vav revealed an amino-terminal leucine-rich region not present in the activated vav oncogene. This region consists of an amphipathic helix-loop-helix followed by a leucine zipper, a structure reminiscent of the carboxy-terminal region of myc proteins and the steroid binding domain of nuclear receptors. In vitro mutagenicity studies have indicated that removal of the amphipathic helix-loop-helix is sufficient to activate the transforming potential of human and mouse vav protooncogenes. vav proteins also possess a cysteine-rich domain whose sequence predicts the formation of two putative metal binding-like domains, Cys-X2-Cys-X13-Cys-X2-Cys and His-X2-Cys-X6-Cys-X2-His. Replacement of some of these cysteine and histidine residues completely abolished the transforming activity of vav genes. Further examination of the alignment of cysteine residues in this region revealed an alternative structure, Cys-X2-Cys-X13-Cys-X2-Cys-X7-Cys-X6-Cys, which is reminiscent of the phorbol ester binding domain of protein kinase C. A similar domain has been recently identified in a second enzyme, diacylglycerol kinase. These structural similarities, along with its expression pattern, suggest that the vav protooncogene codes for a new type of signal-transducing molecule that may play an important role in controlling hematopoiesis.


This article has been cited by other articles:


Home page
Sci SignalHome page
M. Barreira, S. Fabbiano, J. R. Couceiro, E. Torreira, J. L. Martinez-Torrecuadrada, G. Montoya, O. Llorca, and X. R. Bustelo
The C-Terminal SH3 Domain Contributes to the Intramolecular Inhibition of Vav Family Proteins
Sci. Signal., April 15, 2014; 7(321): ra35 - ra35.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. J. Caloca, J. L. Zugaza, and X. R. Bustelo
Mechanistic Analysis of the Amplification and Diversification Events Induced by Vav Proteins in B-lymphocytes
J. Biol. Chem., December 26, 2008; 283(52): 36454 - 36464.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
V. Schapira, G. Lazer, and S. Katzav
Osteopontin Is an Oncogenic Vav1- but not Wild-type Vav1-Responsive Gene: Implications for Fibroblast Transformation.
Cancer Res., June 15, 2006; 66(12): 6183 - 6191.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Kawakatsu, H. Ogita, T. Fukuhara, T. Fukuyama, Y. Minami, K. Shimizu, and Y. Takai
Vav2 as a Rac-GDP/GTP Exchange Factor Responsible for the Nectin-induced, c-Src- and Cdc42-mediated Activation of Rac
J. Biol. Chem., February 11, 2005; 280(6): 4940 - 4947.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
S. Carrasco and I. Merida
Diacylglycerol-dependent Binding Recruits PKC{theta} and RasGRP1 C1 Domains to Specific Subcellular Localizations in Living T Lymphocytes
Mol. Biol. Cell, June 1, 2004; 15(6): 2932 - 2942.
[Abstract] [Full Text] [PDF]


Home page
CVIHome page
S. A. Godambe, K. M. Knapp, E. A. Meals, and B. K. English
Role of vav1 in the Lipopolysaccharide-Mediated Upregulation of Inducible Nitric Oxide Synthase Production and Nuclear Factor for Interleukin-6 Expression Activity in Murine Macrophages
Clin. Vaccine Immunol., May 1, 2004; 11(3): 525 - 531.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Groysman, I. Hornstein, A. Alcover, and S. Katzav
Vav1 and Ly-GDI Two Regulators of Rho GTPases, Function Cooperatively as Signal Transducers in T Cell Antigen Receptor-induced Pathways
J. Biol. Chem., December 20, 2002; 277(51): 50121 - 50130.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. R. Palmby, K. Abe, and C. J. Der
Critical Role of the Pleckstrin Homology and Cysteine-rich Domains in Vav Signaling and Transforming Activity
J. Biol. Chem., October 18, 2002; 277(42): 39350 - 39359.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. A. Booden, S. L. Campbell, and C. J. Der
Critical but Distinct Roles for the Pleckstrin Homology and Cysteine-Rich Domains as Positive Modulators of Vav2 Signaling and Transformation
Mol. Cell. Biol., April 15, 2002; 22(8): 2487 - 2497.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. Y. W. Bourguignon, H. Zhu, B. Zhou, F. Diedrich, P. A. Singleton, and M.-C. Hung
Hyaluronan Promotes CD44v3-Vav2 Interaction with Grb2-p185HER2 and Induces Rac1 and Ras Signaling during Ovarian Tumor Cell Migration and Growth
J. Biol. Chem., December 28, 2001; 276(52): 48679 - 48692.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
L. Zeng, P. Sachdev, L. Yan, J. L. Chan, T. Trenkle, M. McClelland, J. Welsh, and L.-H. Wang
Vav3 Mediates Receptor Protein Tyrosine Kinase Signaling, Regulates GTPase Activity, Modulates Cell Morphology, and Induces Cell Transformation
Mol. Cell. Biol., December 15, 2000; 20(24): 9212 - 9224.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. P. Hehner, T. G. Hofmann, O. Dienz, W. Dröge, and M. L. Schmitz
Tyrosine-phosphorylated Vav1 as a Point of Integration for T-cell Receptor- and CD28-mediated Activation of JNK, p38, and Interleukin-2 Transcription
J. Biol. Chem., June 16, 2000; 275(24): 18160 - 18171.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
X. R. Bustelo
Regulatory and Signaling Properties of the Vav Family
Mol. Cell. Biol., March 1, 2000; 20(5): 1461 - 1477.
[Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. Lopez-Lago, H. Lee, C. Cruz, N. Movilla, and X. R. Bustelo
Tyrosine Phosphorylation Mediates Both Activation and Downmodulation of the Biological Activity of Vav
Mol. Cell. Biol., March 1, 2000; 20(5): 1678 - 1691.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. Ogilvy, D. Metcalf, C. G. Print, M. L. Bath, A. W. Harris, and J. M. Adams
Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival
PNAS, December 21, 1999; 96(26): 14943 - 14948.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
N. Movilla and X. R. Bustelo
Biological and Regulatory Properties of Vav-3, a New Member of the Vav Family of Oncoproteins
Mol. Cell. Biol., November 1, 1999; 19(11): 7870 - 7885.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Abe, I. P. Whitehead, J. P. O'Bryan, and C. J. Der
Involvement of NH2-terminal Sequences in the Negative Regulation of Vav Signaling and Transforming Activity
J. Biol. Chem., October 22, 1999; 274(43): 30410 - 30418.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. Germani, F. Romero, M. Houlard, J. Camonis, S. Gisselbrecht, S. Fischer, and N. Varin-Blank
hSiah2 Is a New Vav Binding Protein Which Inhibits Vav-Mediated Signaling Pathways
Mol. Cell. Biol., May 1, 1999; 19(5): 3798 - 3807.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. Montaner, R. Perona, L. Saniger, and J. C. Lacal
Activation of Serum Response Factor by RhoA Is Mediated by the Nuclear Factor-{kappa}B and C/EBP Transcription Factors
J. Biol. Chem., March 26, 1999; 274(13): 8506 - 8515.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
K. E. Schuebel, N. Movilla, J. L. Rosa, and X. R. Bustelo
Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2
EMBO J., November 16, 1998; 17(22): 6608 - 6621.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. K. Westwick, R. J. Lee, Q. T. Lambert, M. Symons, R. G. Pestell, C. J. Der, and I. P. Whitehead
Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin D1 Promoter but Not with Activation of Jun NH2-terminal Kinase, p38/Mpk2, Serum Response Factor, or c-Jun
J. Biol. Chem., July 3, 1998; 273(27): 16739 - 16747.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
S. Ogilvy, A. G. Elefanty, J. Visvader, M. L. Bath, A. W. Harris, and J. M. Adams
Transcriptional Regulation of vav, a Gene Expressed Throughout the Hematopoietic Compartment
Blood, January 15, 1998; 91(2): 419 - 430.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Shigematsu, H. Iwasaki, T. Otsuka, Y. Ohno, F. Arima, and Y. Niho
Role of the vav Proto-oncogene Product (Vav) in Erythropoietin-mediated Cell Proliferation and Phosphatidylinositol 3-Kinase Activity
J. Biol. Chem., May 30, 1997; 272(22): 14334 - 14340.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
B. Houssa, D. Schaap, J. van der Wal, K. Goto, H. Kondo, A. Yamakawa, M. Shibata, T. Takenawa, and W. J. van Blitterswijk
Cloning of a Novel Human Diacylglycerol Kinase (DGK{theta}) Containing Three Cysteine-rich Domains, a Proline-rich Region, and a Pleckstrin Homology Domain with an Overlapping Ras-associating Domain
J. Biol. Chem., April 18, 1997; 272(16): 10422 - 10428.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
Y. Miyakawa, A. Oda, B. J. Druker, K. Ozaki, M. Handa, H. Ohashi, and Y. Ikeda
Thrombopoietin and Thrombin Induce Tyrosine Phosphorylation of Vav in Human Blood Platelets
Blood, April 15, 1997; 89(8): 2789 - 2798.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
I. Whitehead, H. Kirk, C. Tognon, G. Trigo-Gonzalez, and R. Kay
Expression Cloning of lfc, a Novel Oncogene with Structural Similarities to Guanine Nucleotide Exchange Factors and to the Regulatory Region of Protein Kinase C
J. Biol. Chem., August 4, 1995; 270(31): 18388 - 18395.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C. V. Clevenger, W. Ngo, D. L. Sokol, S. M. Luger, and A. M. Gewirtz
Vav Is Necessary for Prolactin-stimulated Proliferation and Is Translocated into the Nucleus of a T-cell Line
J. Biol. Chem., June 2, 1995; 270(22): 13246 - 13253.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. Uddin, S. Katzav, M. F. White, and L. C. Platanias
Insulin-dependent Tyrosine Phosphorylation of the vav Proto-oncogene Product in Cells of Hematopoietic Origin
J. Biol. Chem., March 31, 1995; 270(13): 7712 - 7716.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
E Gulbins, K. Coggeshall, G Baier, S Katzav, P Burn, and A Altman
Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation
Science, May 7, 1993; 260(5109): 822 - 825.
[Abstract] [PDF]


Home page
ScienceHome page
X. R. Bustelo and M. Barbacid
Tyrosine Phosphorylation of the vav Proto-Oncogene Product in Activated B Cells
Science, May 22, 1992; 256(5060): 1196 - 1199.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
C. Koch, D Anderson, M. Moran, C Ellis, and T Pawson
SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins
Science, May 3, 1991; 252(5006): 668 - 674.
[Abstract] [PDF]


Home page
J Biol ChemHome page
L. Y. W. Bourguignon, H. Zhu, B. Zhou, F. Diedrich, P. A. Singleton, and M.-C. Hung
Hyaluronan Promotes CD44v3-Vav2 Interaction with Grb2-p185HER2 and Induces Rac1 and Ras Signaling during Ovarian Tumor Cell Migration and Growth
J. Biol. Chem., December 28, 2001; 276(52): 48679 - 48692.
[Abstract] [Full Text] [PDF]


Home page
JEMHome page
M. Houlard, R. Arudchandran, F. Regnier-Ricard, A. Germani, S. Gisselbrecht, U. Blank, J. Rivera, and N. Varin-Blank
Vav1 Is a Component of Transcriptionally Active Complexes
J. Exp. Med., May 6, 2002; 195(9): 1115 - 1127.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1991 by the American Association of Cancer Research.