CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Ray, S.
Right arrow Articles by Basu, S.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Ray, S.
Right arrow Articles by Basu, S.

Cell Growth & Differentiation, Vol 2, Issue 11 567-573, Copyright © 1991 by American Association of Cancer Research


ARTICLES

Developmental expression of the embryonic chicken brain DNA polymerase alpha and its binding with monoclonal antibodies against human KB cell DNA polymerase alpha

S Ray, TJ Kelley, S Campion, AP Seve and S Basu
Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556.

Changes in DNA polymerase alpha activity accompanying tissue development have been well established in several systems. In most cases, DNA polymerase alpha activity decreases with development. Here, we report observed changes in DNA polymerase alpha activity throughout embryonic chicken brain (ECB) development. The level of DNA polymerase alpha activity was found to gradually decrease by 60% (2.3 to 0.8 nmol of [3H]dCMP incorporated/mg protein/h) between 9- and 19-day-old ECB. An enzyme-linked immunosorbent assay of DNA polymerase alpha utilizing monoclonal antibody SJK 237-71 (human KB cell DNA pol-alpha binder) also demonstrated a gradual decrease (up to 60%) of antigen over this same range of development. Analysis of DNA polymerase alpha from 11- and 19-day-old ECB by a 10 to 30% glycerol density gradient revealed a high molecular weight peak sedimenting near catalase (11.3 S) with activity at the 11th day being approximately 3-fold greater than activity at the 19th day. A Western immunoblot analysis utilizing monoclonal antibody SJK 237-71 (against human KB cell DNA polymerase alpha) showed a decrease in DNA polymerase alpha from 186 kilodaltons in 9- and 11-day ECB cell-free extracts to 120 kilodaltons in extracts from 13- to 19-day ECB. The conversion of DNA polymerase alpha from a higher to a lower molecular weight form may be a regulatory mechanism in eukaryotic DNA replication.





HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1991 by the American Association of Cancer Research.