CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Solski, P. A.
Right arrow Articles by Der, C. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Solski, P. A.
Right arrow Articles by Der, C. J.
Cell Growth & Differentiation Vol. 13, 363-373, August 2002
© 2002 American Association for Cancer Research

RhoA Biological Activity Is Dependent on Prenylation but Independent of Specific Isoprenoid Modification1

Patricia A. Solski, Whitney Helms, Patricia J. Keely, Lishan Su and Channing J. Der2

University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]

Recent studies showed that specific isoprenoid modification may be critical for RhoB subcellular location and function. Therefore, we determined whether the function of the highly related RhoA protein is also critically dependent on specific isoprenoid modification: (a) in contrast to observations with RhoB or Ras proteins, where farnesylated and geranylgeranylated versions showed differences in subcellular location, both prenylated versions of RhoA showed the same plasma membrane and cytosolic location; (b) a farnesylated version of activated RhoA(63L) retained the same diverse functions as the normally geranylgeranylated RhoA(63L) protein, and both proteins show indistinguishable abilities to stimulate gene expression, cause growth transformation of NIH 3T3 mouse fibroblasts, to stimulate the motility of T47D human breast epithelial cells, and to block HIV-1 viral replication and gene expression; and (c) cells expressing farnesylated RhoA retained sensitivity to the growth inhibition caused by inhibition of geranylgeranyltransferase I, indicating that other proteins are critical targets for inhibitors of geranylgeranylation.




This article has been cited by other articles:


Home page
J Biol ChemHome page
N. Kuhlmann, S. Wroblowski, P. Knyphausen, S. de Boor, J. Brenig, A. Y. Zienert, K. Meyer-Teschendorf, G. J. K. Praefcke, H. Nolte, M. Krüger, et al.
Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDI{alpha} by Lysine Acetylation
J. Biol. Chem., March 11, 2016; 291(11): 5484 - 5499.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
A. Steffen, M. Ladwein, G. A. Dimchev, A. Hein, L. Schwenkmezger, S. Arens, K. I. Ladwein, J. M. Holleboom, F. Schur, J. V. Small, et al.
Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation
J. Cell Sci., October 15, 2013; 126(20): 4572 - 4588.
[Abstract] [Full Text] [PDF]


Home page
CirculationHome page
O. M. Khan, M. K. Akula, K. Skalen, C. Karlsson, M. Stahlman, S. G. Young, J. Boren, and M. O. Bergo
Targeting GGTase-I Activates RHOA, Increases Macrophage Reverse Cholesterol Transport, and Reduces Atherosclerosis in Mice
Circulation, February 19, 2013; 127(7): 782 - 790.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
N. Zhang, J. Liang, Y. Tian, L. Yuan, L. Wu, S. Miao, S. Zong, and L. Wang
A Novel Testis-specific GTPase Serves as a Link to Proteasome Biogenesis: Functional Characterization of RhoS/RSA-14-44 in Spermatogenesis
Mol. Biol. Cell, December 15, 2010; 21(24): 4312 - 4324.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Gastrointest. Liver Physiol.Home page
S. Rattan
3-Hydroxymethyl coenzyme A reductase inhibition attenuates spontaneous smooth muscle tone via RhoA/ROCK pathway regulated by RhoA prenylation
Am J Physiol Gastrointest Liver Physiol, June 1, 2010; 298(6): G962 - G969.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Lung Cell. Mol. Physiol.Home page
Y. Chiba, S. Sato, M. Hanazaki, H. Sakai, and M. Misawa
Inhibition of geranylgeranyltransferase inhibits bronchial smooth muscle hyperresponsiveness in mice
Am J Physiol Lung Cell Mol Physiol, November 1, 2009; 297(5): L984 - L991.
[Abstract] [Full Text] [PDF]


Home page
Endocr Relat CancerHome page
C. Laezza, S. Pisanti, A. M. Malfitano, and M. Bifulco
The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway
Endocr. Relat. Cancer, December 1, 2008; 15(4): 965 - 974.
[Abstract] [Full Text] [PDF]


Home page
IOVSHome page
A. M. Fontainhas and E. Townes-Anderson
RhoA and Its Role in Synaptic Structural Plasticity of Isolated Salamander Photoreceptors
, September 1, 2008; 49(9): 4177 - 4187.
[Abstract] [Full Text] [PDF]


Home page
J. Pharmacol. Exp. Ther.Home page
C. A. Patel and S. Rattan
RhoA Prenylation Inhibitor Produces Relaxation of Tonic Smooth Muscle of Internal Anal Sphincter
J. Pharmacol. Exp. Ther., May 1, 2007; 321(2): 501 - 508.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
E. J. Chenette, N. Y. Mitin, and C. J. Der
Multiple Sequence Elements Facilitate Chp Rho GTPase Subcellular Location, Membrane Association, and Transforming Activity
Mol. Biol. Cell, July 1, 2006; 17(7): 3108 - 3121.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. C. Berzat, J. E. Buss, E. J. Chenette, C. A. Weinbaum, A. Shutes, C. J. Der, A. Minden, and A. D. Cox
Transforming Activity of the Rho Family GTPase, Wrch-1, a Wnt-regulated Cdc42 Homolog, Is Dependent on a Novel Carboxyl-terminal Palmitoylation Motif
J. Biol. Chem., September 23, 2005; 280(38): 33055 - 33065.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
E. J. Chenette, A. Abo, and C. J. Der
Critical and Distinct Roles of Amino- and Carboxyl-terminal Sequences in Regulation of the Biological Activity of the Chp Atypical Rho GTPase
J. Biol. Chem., April 8, 2005; 280(14): 13784 - 13792.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
P. A. Solski, R. S. Wilder, K. L. Rossman, J. Sondek, A. D. Cox, S. L. Campbell, and C. J. Der
Requirement For C-terminal Sequences in Regulation of Ect2 Guanine Nucleotide Exchange Specificity and Transformation
J. Biol. Chem., June 11, 2004; 279(24): 25226 - 25233.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
N. Y. Mitin, M. B. Ramocki, A. J. Zullo, C. J. Der, S. F. Konieczny, and E. J. Taparowsky
Identification and Characterization of Rain, a Novel Ras-interacting Protein with a Unique Subcellular Localization
J. Biol. Chem., May 21, 2004; 279(21): 22353 - 22361.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
K. Wennerberg and C. J. Der
Rho-family GTPases: it's not only Rac and Rho (and I like it)
J. Cell Sci., March 15, 2004; 117(8): 1301 - 1312.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
P. L. Joyce and A. D. Cox
Rac1 and Rac3 Are Targets for Geranylgeranyltransferase I Inhibitor-Mediated Inhibition of Signaling, Transformation, and Membrane Ruffling
Cancer Res., November 15, 2003; 63(22): 7959 - 7967.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. J. Fiordalisi, R. L. Johnson II, C. A. Weinbaum, K. Sakabe, Z. Chen, P. J. Casey, and A. D. Cox
High Affinity for Farnesyltransferase and Alternative Prenylation Contribute Individually to K-Ras4B Resistance to Farnesyltransferase Inhibitors
J. Biol. Chem., October 24, 2003; 278(43): 41718 - 41727.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 2002 by the American Association of Cancer Research.