CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Wilsker, D.
Right arrow Articles by Moran, E.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Wilsker, D.
Right arrow Articles by Moran, E.
Cell Growth & Differentiation Vol. 13, 95-106, March 2002
© 2002 American Association for Cancer Research


Review

ARID Proteins

A Diverse Family of DNA Binding Proteins Implicated in the Control of Cell Growth, Differentiation, and Development1

Deborah Wilsker, Antonia Patsialou, Peter B. Dallas and Elizabeth Moran2

Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 [D. W., A. P., E. M.], and TVW Telethon Institute for Child Health Research and the Center for Child Health Research, University of Western Australia, Subiaco, Western Australia 6008 [P. B. D.]

The ARID family of DNA binding proteins was first recognized ~5 years ago. The founding members, murine Bright and Drosophila dead ringer (Dri), were independently cloned on the basis of their ability to bind to AT-rich DNA sequences, although neither cDNA encoded a recognizable DNA binding domain. Mapping of the respective binding activities revealed a shared but previously unrecognized DNA binding domain, the consensus sequence of which extends across ~100 amino acids. This novel DNA binding domain was designated AT-rich interactive domain (ARID), based on the behavior of Bright and Dri. The consensus sequence occurs in 13 distinct human proteins and in proteins from all sequenced eukaryotic organisms. The majority of ARID-containing proteins were not cloned in the context of DNA binding activity, however, and their features as DNA binding proteins are only beginning to be investigated. The ARID region itself shows more diversity in structure and function than the highly conserved consensus sequence suggests. The basic structure appears to be a series of six {alpha}-helices separated by ß-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. It has also become apparent that the DNA binding activity of ARID-containing proteins is not necessarily sequence specific. What is consistent is the evidence that family members play vital roles in the regulation of development and/or tissue-specific gene expression. Inappropriate expression of ARID proteins is also increasingly implicated in human tumorigenesis. This review summarizes current knowledge about the structure and function of ARID family members, with a particular focus on the human proteins.




This article has been cited by other articles:


Home page
J. Clin. Pathol.Home page
W.-C. Tsai, D.-Y. Hueng, S. Nieh, and H.-W. Gao
ARID4B is a good biomarker to predict tumour behaviour and decide WHO grades in gliomas and meningiomas
J. Clin. Pathol., February 1, 2017; 70(2): 162 - 167.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
M. L. Ratliff, M. Mishra, M. B. Frank, J. M. Guthridge, and C. F. Webb
The Transcription Factor ARID3a Is Important for In Vitro Differentiation of Human Hematopoietic Progenitors
J. Immunol., January 15, 2016; 196(2): 614 - 623.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
V. Uribe, C. Badia-Careaga, J. C. Casanova, J. N. Dominguez, J. L. de la Pompa, and J. J. Sanz-Ezquerro
Arid3b is essential for second heart field cell deployment and heart patterning
Development, November 1, 2014; 141(21): 4168 - 4181.
[Abstract] [Full Text] [PDF]


Home page
Plant Physiol.Home page
M. Antosch, S. A. Mortensen, and K. D. Grasser
Plant Proteins Containing High Mobility Group Box DNA-Binding Domains Modulate Different Nuclear Processes
Plant Physiology, July 1, 2012; 159(3): 875 - 883.
[Full Text] [PDF]


Home page
Mol. Biol. CellHome page
K. Amano, K. Hata, S. Muramatsu, M. Wakabayashi, Y. Takigawa, K. Ono, M. Nakanishi, R. Takashima, M. Kogo, A. Matsuda, et al.
Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription
Mol. Biol. Cell, April 15, 2011; 22(8): 1300 - 1311.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
Y. Fukuyo, N. Horikoshi, A. M. Ishov, S. J. Silverstein, and T. Nakajima
The Herpes Simplex Virus Immediate-Early Ubiquitin Ligase ICP0 Induces Degradation of the ICP0 Repressor Protein E2FBP1
J. Virol., April 1, 2011; 85(7): 3356 - 3366.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
J. C. Casanova, V. Uribe, C. Badia-Careaga, G. Giovinazzo, M. Torres, and J. J. Sanz-Ezquerro
Apical ectodermal ridge morphogenesis in limb development is controlled by Arid3b-mediated regulation of cell movements
Development, March 15, 2011; 138(6): 1195 - 1205.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. Suryadinata, M. Sadowski, R. Steel, and B. Sarcevic
Cyclin-dependent Kinase-mediated Phosphorylation of RBP1 and pRb Promotes Their Dissociation to Mediate Release of the SAP30{middle dot}mSin3{middle dot}HDAC Transcriptional Repressor Complex
J. Biol. Chem., February 18, 2011; 286(7): 5108 - 5118.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y.-T. Wang, Y.-J. Pan, C.-C. Cho, B.-C. Lin, L.-H. Su, Y.-C. Huang, and C.-H. Sun
A Novel Pax-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia
J. Biol. Chem., October 15, 2010; 285(42): 32213 - 32226.
[Abstract] [Full Text] [PDF]


Home page
haematolHome page
J. Healy, C. Richer, M. Bourgey, E. A. Kritikou, and D. Sinnett
Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia
Haematologica, September 1, 2010; 95(9): 1608 - 1611.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
R. B. Prasad, F. J. Hosking, J. Vijayakrishnan, E. Papaemmanuil, R. Koehler, M. Greaves, E. Sheridan, A. Gast, S. E. Kinsey, T. Lightfoot, et al.
Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood
Blood, March 4, 2010; 115(9): 1765 - 1767.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
J. C. Nixon, S. Ferrell, C. Miner, A. L. Oldham, U. Hochgeschwender, and C. F. Webb
Transgenic Mice Expressing Dominant-Negative Bright Exhibit Defects in B1 B Cells
J. Immunol., November 15, 2008; 181(10): 6913 - 6922.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
K. W. Trotter, H.-Y. Fan, M. L. Ivey, R. E. Kingston, and T. K. Archer
The HSA Domain of BRG1 Mediates Critical Interactions Required for Glucocorticoid Receptor-Dependent Transcriptional Activation In Vivo
Mol. Cell. Biol., February 15, 2008; 28(4): 1413 - 1426.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
A. G. Scibetta, S. Santangelo, J. Coleman, D. Hall, T. Chaplin, J. Copier, S. Catchpole, J. Burchell, and J. Taylor-Papadimitriou
Functional Analysis of the Transcription Repressor PLU-1/JARID1B
Mol. Cell. Biol., October 15, 2007; 27(20): 7220 - 7235.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
C. R. Ball, I. H. Pilz, M. Schmidt, S. Fessler, D. A. Williams, C. von Kalle, and H. Glimm
Stable differentiation and clonality of murine long-term hematopoiesis after extended reduced-intensity selection for MGMT P140K transgene expression
Blood, September 15, 2007; 110(6): 1779 - 1787.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C.-H. Wang, L.-H. Su, and C.-H. Sun
A Novel ARID/Bright-like Protein Involved in Transcriptional Activation of Cyst Wall Protein 1 Gene in Giardia lamblia
J. Biol. Chem., March 23, 2007; 282(12): 8905 - 8914.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. Dobi, M. Szemes, C. Lee, M. Palkovits, F. Lim, A. Gyorgy, M. A. Mahan, and D. V. Agoston
AUF1 Is Expressed in the Developing Brain, Binds to AT-rich Double-stranded DNA, and Regulates Enkephalin Gene Expression
J. Biol. Chem., September 29, 2006; 281(39): 28889 - 28900.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
N. G. Nagl Jr., A. Patsialou, D. S. Haines, P. B. Dallas, G. R. Beck Jr., and E. Moran
The p270 (ARID1A/SMARCF1) Subunit of Mammalian SWI/SNF-Related Complexes Is Essential for Normal Cell Cycle Arrest
Cancer Res., October 15, 2005; 65(20): 9236 - 9244.
[Abstract] [Full Text] [PDF]


Home page
Plant Physiol.Home page
D. Gonzalez-Ballester, A. de Montaigu, J. J. Higuera, A. Galvan, and E. Fernandez
Functional Genomics of the Regulation of the Nitrate Assimilation Pathway in Chlamydomonas
Plant Physiology, February 1, 2005; 137(2): 522 - 533.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
J. C. Nixon, J. Rajaiya, and C. F. Webb
Mutations in the DNA-binding Domain of the Transcription Factor Bright Act as Dominant Negative Proteins and Interfere with Immunoglobulin Transactivation
J. Biol. Chem., December 10, 2004; 279(50): 52465 - 52472.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
E. R. Hines, O. I. Kolek, M. D. Jones, S. H. Serey, N. B. Sirjani, P. R. Kiela, P. W. Jurutka, M. R. Haussler, J. F. Collins, and F. K. Ghishan
1,25-Dihydroxyvitamin D3 Down-regulation of PHEX Gene Expression Is Mediated by Apparent Repression of a 110 kDa Transfactor That Binds to a Polyadenine Element in the Promoter
J. Biol. Chem., November 5, 2004; 279(45): 46406 - 46414.
[Abstract] [Full Text] [PDF]


Home page
Biochem. J.Home page
X. WANG, N. G. NAGL JR, D. WILSKER, M. VAN SCOY, S. PACCHIONE, P. YACIUK, P. B. DALLAS, and E. MORAN
Two related ARID family proteins are alternative subunits of human SWI/SNF complexes
Biochem. J., October 15, 2004; 383(2): 319 - 325.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
L. Mohrmann, K. Langenberg, J. Krijgsveld, A. J. Kal, A. J. R. Heck, and C. P. Verrijzer
Differential Targeting of Two Distinct SWI/SNF-Related Drosophila Chromatin-Remodeling Complexes
Mol. Cell. Biol., April 15, 2004; 24(8): 3077 - 3088.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
K. Tan, A. L. Shaw, B. Madsen, K. Jensen, J. Taylor-Papadimitriou, and P. S. Freemont
Human PLU-1 Has Transcriptional Repression Properties and Interacts with the Developmental Transcription Factors BF-1 and PAX9
J. Biol. Chem., May 30, 2003; 278(23): 20507 - 20513.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 2002 by the American Association of Cancer Research.