CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Yang, Y.-a.
Right arrow Articles by Wakefield, L. M.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Yang, Y.-a.
Right arrow Articles by Wakefield, L. M.
Cell Growth & Differentiation Vol. 13, 123-130, March 2002
© 2002 American Association for Cancer Research

Smad3 in the Mammary Epithelium Has a Nonredundant Role in the Induction of Apoptosis, but not in the Regulation of Proliferation or Differentiation by Transforming Growth Factor-ß

Yu-an Yang1, Binwu Tang, Gertraud Robinson, Lothar Hennighausen, Steven G. Brodie, Chu-Xia Deng and Lalage M. Wakefield2

Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute [Y. Y., B. T., L. M. W.], and Laboratory of Genetics and Physiology [G. R., L. H.], and Genetics of Development and Disease Branch [S. G. B., C-X. D.], National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892

Transforming growth factor-ß (TGF-ß) regulates proliferation, morphogenesis, and functional differentiation in the mammary gland and plays complex roles in mammary tumorigenesis. Here we show that the signaling mediators Smad1–Smad5 are expressed at all stages of mammary gland development. To begin to investigate which Smads mediate which TGF-ß responses, we have analyzed mammary gland development in Smad3 null mice. Smad3 null virgin females showed delayed mammary gland development. However, this phenotype was secondary to ovarian insufficiency because Smad3 null mammary epithelium developed normally in hormonally supplemented Smad3 null mice or when transplanted into wild-type hosts. Absence of Smad3 had no effect on the ability of TGF-ß to inhibit the growth of mammary epithelial cells in culture, and no compensatory changes in expression or activation of Smad2 were seen in the Smad3 null epithelium. A small but significant decrease in apoptotic cells was seen in involuting glands from Smad3 null transplants. The results suggest that epithelial Smad3 is dispensable for TGF-ß effects on proliferation and differentiation in the mammary gland, but that it contributes in a nonredundant manner to the induction of apoptosis.




This article has been cited by other articles:


Home page
Mol Cancer ResHome page
E. A. Kohn, Y.-a. Yang, Z. Du, Y. Nagano, C. M. H. Van Schyndle, M. A. Herrmann, M. Heldman, J.-Q. Chen, C. H. Stuelten, K. C. Flanders, et al.
Biological Responses to TGF-{beta} in the Mammary Epithelium Show a Complex Dependency on Smad3 Gene Dosage with Important Implications for Tumor Progression
Mol. Cancer Res., October 1, 2012; 10(10): 1389 - 1399.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
N. S. Jahchan, Y. H. You, W. J. Muller, and K. Luo
Transforming Growth Factor-{beta} Regulator SnoN Modulates Mammary Gland Branching Morphogenesis, Postlactational Involution, and Mammary Tumorigenesis
Cancer Res., May 15, 2010; 70(10): 4204 - 4213.
[Abstract] [Full Text] [PDF]


Home page
Biol. Reprod.Home page
W. V. Ingman and S. A. Robertson
Mammary Gland Development in Transforming Growth Factor Beta1 Null Mutant Mice: Systemic and Epithelial Effects
Biol Reprod, October 1, 2008; 79(4): 711 - 717.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
R. Ge, V. Rajeev, P. Ray, E. Lattime, S. Rittling, S. Medicherla, A. Protter, A. Murphy, J. Chakravarty, S. Dugar, et al.
Inhibition of Growth and Metastasis of Mouse Mammary Carcinoma by Selective Inhibitor of Transforming Growth Factor-{beta} Type I Receptor Kinase In vivo.
Clin. Cancer Res., July 15, 2006; 12(14): 4315 - 4330.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Renal Physiol.Home page
N. G. Docherty, O. E. O'Sullivan, D. A. Healy, M. Murphy, A. J. O'Neill, J. M. Fitzpatrick, and R. W. G. Watson
TGF-beta1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation
Am J Physiol Renal Physiol, May 1, 2006; 290(5): F1202 - F1212.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
W. Ju, A. Ogawa, J. Heyer, D. Nierhof, L. Yu, R. Kucherlapati, D. A. Shafritz, and E. P. Bottinger
Deletion of Smad2 in Mouse Liver Reveals Novel Functions in Hepatocyte Growth and Differentiation
Mol. Cell. Biol., January 15, 2006; 26(2): 654 - 667.
[Abstract] [Full Text] [PDF]


Home page
Endocr Relat CancerHome page
R Serra and M R Crowley
Mouse models of transforming growth factor {beta} impact in breast development and cancer
Endocr. Relat. Cancer, December 1, 2005; 12(4): 749 - 760.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
M. Thangaraju, M. Rudelius, B. Bierie, M. Raffeld, S. Sharan, L. Hennighausen, A-M. Huang, and E. Sterneck
C/EBP{delta} is a crucial regulator of pro-apoptotic gene expression during mammary gland involution
Development, November 1, 2005; 132(21): 4675 - 4685.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
J. E. Burdette, J. S. Jeruss, S. J. Kurley, E. J. Lee, and T. K. Woodruff
Activin A Mediates Growth Inhibition and Cell Cycle Arrest through Smads in Human Breast Cancer Cells
Cancer Res., September 1, 2005; 65(17): 7968 - 7975.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Wang, K. Song, T. L. Sponseller, and D. Danielpour
Novel Function of Androgen Receptor-associated Protein 55/Hic-5 as a Negative Regulator of Smad3 Signaling
J. Biol. Chem., February 18, 2005; 280(7): 5154 - 5162.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
M. Kaviratne, M. Hesse, M. Leusink, A. W. Cheever, S. J. Davies, J. H. McKerrow, L. M. Wakefield, J. J. Letterio, and T. A. Wynn
IL-13 Activates a Mechanism of Tissue Fibrosis That Is Completely TGF-{beta} Independent
J. Immunol., September 15, 2004; 173(6): 4020 - 4029.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
N. G. Deane, H. Lee, J. Hamaamen, A. Ruley, M. K. Washington, B. LaFleur, S. S. Thorgeirsson, R. Price, and R. D. Beauchamp
Enhanced Tumor Formation in Cyclin D1 x Transforming Growth Factor {beta}1 Double Transgenic Mice with Characterization by Magnetic Resonance Imaging
Cancer Res., February 15, 2004; 64(4): 1315 - 1322.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
N. Dumont, A. V. Bakin, and C. L. Arteaga
Autocrine Transforming Growth Factor-{beta} Signaling Mediates Smad-independent Motility in Human Cancer Cells
J. Biol. Chem., January 31, 2003; 278(5): 3275 - 3285.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 2002 by the American Association of Cancer Research.