CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Feng, Y.
Right arrow Articles by Ferris, D. K.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Feng, Y.
Right arrow Articles by Ferris, D. K.
Cell Growth & Differentiation Vol. 12, 29-37, January 2001
© 2001 American Association for Cancer Research


Articles

Polo-like Kinase Interacts with Proteasomes and Regulates Their Activity1

Yang Feng, Dan L. Longo and Douglas K. Ferris2

Biological Mechanisms Section, Laboratory of Leukocyte Biology, National Cancer Institute—Frederick Cancer Research and Development Center, Frederick, Maryland 21702 [Y. F., D. K. F.]; National Institute on Aging, Baltimore, Maryland 21224 [D. L. L.]; and IRSP, Scientific Applications International Corp.—Frederick, National Cancer Institute—Frederick Cancer Research and Development Center, Frederick, Maryland 21702 [D. K. F.]

Abstract

The polo-like kinase (Plk) has been shown to be associated with the anaphase-promoting complex at the transition from metaphase to anaphase and to regulate ubiquitination, the process that targets proteins for degradation by proteasomes. In this study, we have identified proteasomal proteins interacting with Plk by mass spectrometry and found that Plk and 20S proteasome subunits could be reversibly immunoprecipitated from both human CA46 cells and HEK 293 cells transfected with HA-Plk. Furthermore, both coprecipitated Plk and baculovirus-expressed Plk were able to phosphorylate proteasome subunits, and metabolic labeling studies indicate that Plk is partially responsible for the phosphorylation of 20S proteasome subunits C9 and C8 in vivo. In addition, phosphorylation of proteasomes by Plk enhanced proteolytic activity toward an artificial substrate Suc-L-L-V-Y-AMC in vitro and in vivo. Finally, we were also able to detect Plk associated with 26S proteasomes under certain conditions. Together our results suggest that Plk is an important mitotic regulator of proteasome activity.




This article has been cited by other articles:


Home page
Am. J. Physiol. Heart Circ. Physiol.Home page
S. B. Scruggs, N. C. Zong, D. Wang, E. Stefani, and P. Ping
Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics
Am J Physiol Heart Circ Physiol, July 1, 2012; 303(1): H9 - H18.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
Z. Sha, A. Peth, and A. L. Goldberg
Keeping proteasomes under control--a role for phosphorylation in the nucleus
PNAS, November 15, 2011; 108(46): 18573 - 18574.
[Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
X. Guo, J. L. Engel, J. Xiao, V. S. Tagliabracci, X. Wang, L. Huang, and J. E. Dixon
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
PNAS, November 15, 2011; 108(46): 18649 - 18654.
[Abstract] [Full Text] [PDF]


Home page
Biol. Reprod.Home page
M. Kong, E. S. Diaz, and P. Morales
Participation of the Human Sperm Proteasome in the Capacitation Process and Its Regulation by Protein Kinase A and Tyrosine Kinase
Biol Reprod, May 1, 2009; 80(5): 1026 - 1035.
[Abstract] [Full Text] [PDF]


Home page
MCPHome page
H. Lu, C. Zong, Y. Wang, G. W. Young, N. Deng, P. Souda, X. Li, J. Whitelegge, O. Drews, P.-Y. Yang, et al.
Revealing the Dynamics of the 20 S Proteasome Phosphoproteome: A Combined CID and Electron Transfer Dissociation Approach
Mol. Cell. Proteomics, November 1, 2008; 7(11): 2073 - 2089.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
I. Staniszewska, I. K. Sariyer, S. Lecht, M. C. Brown, E. M. Walsh, G. P. Tuszynski, M. Safak, P. Lazarovici, and C. Marcinkiewicz
Integrin {alpha}9{beta}1 is a receptor for nerve growth factor and other neurotrophins
J. Cell Sci., February 15, 2008; 121(4): 504 - 513.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
D. M. Lowery, K. R. Clauser, M. Hjerrild, D. Lim, J. Alexander, K. Kishi, S.-E. Ong, S. Gammeltoft, S. A. Carr, and M. B. Yaffe
Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate
EMBO J., May 2, 2007; 26(9): 2262 - 2273.
[Abstract] [Full Text] [PDF]


Home page
CirculationHome page
C. Depre, Q. Wang, L. Yan, N. Hedhli, P. Peter, L. Chen, C. Hong, L. Hittinger, B. Ghaleh, J. Sadoshima, et al.
Activation of the Cardiac Proteasome During Pressure Overload Promotes Ventricular Hypertrophy
Circulation, October 24, 2006; 114(17): 1821 - 1828.
[Abstract] [Full Text] [PDF]


Home page
Molecular Cancer TherapeuticsHome page
H. Y. Yamada and G. J. Gorbsky
Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons
Mol. Cancer Ther., January 1, 2006; 5(1): 29 - 38.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
L. Chen and K. Madura
Increased Proteasome Activity, Ubiquitin-Conjugating Enzymes, and eEF1A Translation Factor Detected in Breast Cancer Tissue
Cancer Res., July 1, 2005; 65(13): 5599 - 5606.
[Abstract] [Full Text] [PDF]


Home page
Mol Cancer ResHome page
J.-H. Yuan, Y. Feng, R. H. Fisher, S. Maloid, D. L. Longo, and D. K. Ferris
Polo-Like Kinase 1 Inactivation Following Mitotic DNA Damaging Treatments Is Independent of Ataxia Telangiectasia Mutated Kinase
Mol. Cancer Res., July 1, 2004; 2(7): 417 - 426.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
D. T. S. Pak and M. Sheng
Targeted Protein Degradation and Synapse Remodeling by an Inducible Protein Kinase
Science, November 21, 2003; 302(5649): 1368 - 1373.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
S. Ma, J. Charron, and R. L. Erikson
Role of Plk2 (Snk) in Mouse Development and Cell Proliferation
Mol. Cell. Biol., October 1, 2003; 23(19): 6936 - 6943.
[Abstract] [Full Text] [PDF]


Home page
Mol Cancer ResHome page
S. Ma, M.-A. Liu, Y.-L. O. Yuan, and R. L. Erikson
The Serum-Inducible Protein Kinase Snk Is a G1 Phase Polo-Like Kinase That Is Inhibited by the Calcium- and Integrin-Binding Protein CIB
Mol. Cancer Res., March 1, 2003; 1(5): 376 - 384.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
F. R. Yarm
Plk Phosphorylation Regulates the Microtubule-Stabilizing Protein TCTP
Mol. Cell. Biol., September 1, 2002; 22(17): 6209 - 6221.
[Abstract] [Full Text] [PDF]


Home page
MCPHome page
S. Claverol, O. Burlet-Schiltz, E. Girbal-Neuhauser, J. E. Gairin, and B. Monsarrat
Mapping and Structural Dissection of Human 20 S Proteasome Using Proteomic Approaches
Mol. Cell. Proteomics, August 1, 2002; 1(8): 567 - 578.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 2001 by the American Association of Cancer Research.