CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Ngo, C. V.
Right arrow Articles by Thomas-Tikhonenko, A.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Ngo, C. V.
Right arrow Articles by Thomas-Tikhonenko, A.
Cell Growth & Differentiation Vol. 11, 201-210, April 2000
© 2000 American Association for Cancer Research


Articles

An in Vivo Function for the Transforming Myc Protein: Elicitation of the Angiogenic Phenotype1

Cam V. Ngo, Michael Gee, Nasim Akhtar, Duonan Yu, Olga Volpert, Robert Auerbach and Andrei Thomas-Tikhonenko2

Department of Pathobiology [C. V. N., D. Y., A. T-T.], University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6051 and Cell and Molecular Biology Graduate Program [M. G., A. T-T.], University of Pennsylvania, Philadelphia, Pennsylvania 19104-6051; Department of Zoology, [N. A., R. A.], University of Wisconsin, Madison, Wisconsin 53706; and Department of Microbiology and Immunology and R. H. Lurie Cancer Center, [O. V.], Northwestern University Medical School, Chicago, Illinois 60611

Abstract

The ability of neoplastic cells to recruit blood vasculature is crucial to their survival in the host organism. However, the evidence linking dominant oncogenes to the angiogenic switch remains incomplete. We demonstrate here that Myc, an oncoprotein implicated in many human malignancies, stimulates neovascularization. As an experimental model, we used Rat-1A fibroblasts that form vascular tumors upon transformation by Myc in immunocompromised mice. Our previous work and the use of neutralizing antibodies reveal that in these cells, the angiogenic switch is achieved via down-modulation of thrombospondin-1, a secreted inhibitor of angiogenesis, whereas the levels of vascular endothelial growth factor, a major activator of angiogenesis, remain high and unaffected by Myc. Consistent with this finding, overexpression of Myc confers upon the conditioned media the ability to promote migration of adjacent endothelial cells in vitro and corneal neovascularization in vivo. Furthermore, mobilization of estrogen-dependent Myc in vivo with the appropriate steroid provokes neovascularization of cell implants embedded in Matrigel. These data suggest that Myc is fully competent to trigger the angiogenic switch in vivo and that secondary events may not be required for neovascularization of Myc-induced tumors.




This article has been cited by other articles:


Home page
J Biol ChemHome page
X. Li, X. Liu, W. Xu, P. Zhou, P. Gao, S. Jiang, P. E. Lobie, and T. Zhu
c-MYC-regulated miR-23a/24-2/27a Cluster Promotes Mammary Carcinoma Cell Invasion and Hepatic Metastasis by Targeting Sprouty2
J. Biol. Chem., June 21, 2013; 288(25): 18121 - 18133.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
K. Anders and T. Blankenstein
Molecular Pathways: Comparing the Effects of Drugs and T Cells to Effectively Target Oncogenes
Clin. Cancer Res., January 15, 2013; 19(2): 320 - 326.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. Neill, H. Painter, S. Buraschi, R. T. Owens, M. P. Lisanti, L. Schaefer, and R. V. Iozzo
Decorin Antagonizes the Angiogenic Network: CONCURRENT INHIBITION OF MET, HYPOXIA INDUCIBLE FACTOR 1{alpha}, VASCULAR ENDOTHELIAL GROWTH FACTOR A, AND INDUCTION OF THROMBOSPONDIN-1 AND TIMP3
J. Biol. Chem., February 17, 2012; 287(8): 5492 - 5506.
[Abstract] [Full Text] [PDF]


Home page
Circ. Res.Home page
M. Abdellatif
Differential Expression of MicroRNAs in Different Disease States
Circ. Res., February 17, 2012; 110(4): 638 - 650.
[Abstract] [Full Text] [PDF]


Home page
Physiol. Rev.Home page
D. Sayed and M. Abdellatif
MicroRNAs in Development and Disease
Physiol Rev, July 1, 2011; 91(3): 827 - 887.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
L. Zhou, D. Picard, Y.-S. Ra, M. Li, P. A. Northcott, Y. Hu, D. Stearns, C. Hawkins, M. D. Taylor, J. Rutka, et al.
Silencing of Thrombospondin-1 Is Critical for Myc-Induced Metastatic Phenotypes in Medulloblastoma
Cancer Res., October 15, 2010; 70(20): 8199 - 8210.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
M. Dews, J. L. Fox, S. Hultine, P. Sundaram, W. Wang, Y. Y. Liu, E. Furth, G. H. Enders, W. El-Deiry, J. M. Schelter, et al.
The Myc-miR-17~92 Axis Blunts TGF{beta} Signaling and Production of Multiple TGF{beta}-Dependent Antiangiogenic Factors
Cancer Res., October 15, 2010; 70(20): 8233 - 8246.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S.-Y. Kang, O. J. Halvorsen, K. Gravdal, N. Bhattacharya, J. M. Lee, N. W. Liu, B. T. Johnston, A. B. Johnston, S. A. Haukaas, K. Aamodt, et al.
Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1
PNAS, July 21, 2009; 106(29): 12115 - 12120.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
K. Shchors and G. Evan
Tumor Angiogenesis: Cause or Consequence of Cancer?
Cancer Res., August 1, 2007; 67(15): 7059 - 7061.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
K. Shchors, E. Shchors, F. Rostker, E. R. Lawlor, L. Brown-Swigart, and G. I. Evan
The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta
Genes & Dev., September 15, 2006; 20(18): 2527 - 2538.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y. Mizukami, K. Fujiki, E.-M. Duerr, M. Gala, W.-S. Jo, X. Zhang, and D. C. Chung
Hypoxic Regulation of Vascular Endothelial Growth Factor through the Induction of Phosphatidylinositol 3-Kinase/Rho/ROCK and c-Myc
J. Biol. Chem., May 19, 2006; 281(20): 13957 - 13963.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. S. Ricci, Z. Jin, M. Dews, D. Yu, A. Thomas-Tikhonenko, D. T. Dicker, and W. S. El-Deiry
Direct Repression of FLIP Expression by c-myc Is a Major Determinant of TRAIL Sensitivity
Mol. Cell. Biol., October 1, 2004; 24(19): 8541 - 8555.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
U. E. Knies-Bamforth, S. B. Fox, R. Poulsom, G. I. Evan, and A. L. Harris
c-Myc Interacts with Hypoxia to Induce Angiogenesis In vivo by a Vascular Endothelial Growth Factor-Dependent Mechanism
Cancer Res., September 15, 2004; 64(18): 6563 - 6570.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
A. Thomas-Tikhonenko, I. Viard-Leveugle, M. Dews, P. Wehrli, C. Sevignani, D. Yu, S. Ricci, W. el-Deiry, B. Aronow, G. Kaya, et al.
Myc-Transformed Epithelial Cells Down-Regulate Clusterin, Which Inhibits Their Growth in Vitro and Carcinogenesis in Vivo
Cancer Res., May 1, 2004; 64(9): 3126 - 3136.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
S. Christian, J. Pilch, M. E. Akerman, K. Porkka, P. Laakkonen, and E. Ruoslahti
Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels
J. Cell Biol., November 24, 2003; 163(4): 871 - 878.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
M. Yi, T. Sakai, R. Fassler, and E. Ruoslahti
Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity
PNAS, September 30, 2003; 100(20): 11435 - 11438.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
P. C. Fernandez, S. R. Frank, L. Wang, M. Schroeder, S. Liu, J. Greene, A. Cocito, and B. Amati
Genomic targets of the human c-Myc protein
Genes & Dev., May 1, 2003; 17(9): 1115 - 1129.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
T. UDAGAWA, A. FERNANDEZ, E.-G. ACHILLES, J. FOLKMAN, and R. J. D'AMATO
Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy
FASEB J, September 1, 2002; 16(11): 1361 - 1370.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
C. A. Hunter, D. Yu, M. Gee, C. V. Ngo, C. Sevignani, M. Goldschmidt, T. V. Golovkina, S. Evans, W. F. Lee, and A. Thomas-Tikhonenko
Cutting Edge: Systemic Inhibition of Angiogenesis Underlies Resistance to Tumors During Acute Toxoplasmosis
J. Immunol., May 15, 2001; 166(10): 5878 - 5881.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 2000 by the American Association of Cancer Research.