CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Whelan, R. D. H.
Right arrow Articles by Parker, P. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Whelan, R. D. H.
Right arrow Articles by Parker, P. J.
Cell Growth & Differentiation Vol. 10, 271-277, April 1999
© 1999 American Association for Cancer Research

Tetradecanoyl Phorbol Acetate-induced Microtubule Reorganization Is Required for Sustained Mitogen-activated Protein Kinase Activation and Morphological Differentiation of U937 Cells

Richard D. H. Whelan, Susan C. Kiley1 and Peter J. Parker2

Imperial Cancer Research Fund, Protein Phosphorylation Laboratory, London WC2A 3PX, United Kingdom

Investigation of 12-tetradecanoyl phorbol 13-acetate (TPA)-resistant U937 cell clones has demonstrated that the normal sustained p42 mitogen-activated protein kinase (p42MAPK) activation produced by TPA treatment is absent. This is shown to be due to the inability of TPA to maintain activation of MAP/extracellular signal-regulated kinase kinase (MEK) and cRaf1. A direct relationship between sustained p42MAPK activation and differentiation is provided by the demonstration that blockade of MEK activation by PD098059 prevents TPA-induced morphological differentiation of wild type U937 cells. Using TPA-resistant clones, an involvement of microtubule reorganization and granule release is demonstrated by the ability of the microtubule depolymerizing agent nocodazole, to promote sustained p42MAPK activation in the presence of TPA. This response correlates with the lack of TPA-induced microtubule reorganization in these clones and the ability of nocodazole to partially bypass resistance to TPA. The results demonstrate a causal link between protein kinase C-dependent microtubule reorganization, sustained p42MAPK activation, and the induction of differentiation in U937 cells.







HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1999 by the American Association of Cancer Research.