CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Kubbutat, M. H. G.
Right arrow Articles by Vousden, K. H.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Kubbutat, M. H. G.
Right arrow Articles by Vousden, K. H.
Cell Growth & Differentiation Vol. 10, 87-92, February 1999
© 1999 American Association for Cancer Research

Analysis of the Degradation Function of Mdm21

Michael H. G. Kubbutat, Robert L. Ludwig, Arnold J. Levine and Karen H. Vousden2

ABL Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201 [M. H. G. K., R. L. L., K. H. V.], and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014 [A. J. L.]

Degradation of the p53 tumor suppressor protein has been shown to be regulated by Mdm2. In this study, we identify regions of Mdm2 that are not required for p53 binding but are essential for degradation. Mdm2 mutants lacking these regions function in a dominant negative fashion, stabilizing endogenous p53 in cells by interfering with the degradative function of the endogenous Mdm2. p53 protein stabilized in this way does not strongly enhance the expression of p21Waf1/Cip1, the product of a p53-responsive gene, supporting the model in which binding of Mdm2 to the NH2-terminal domain of p53 inhibits interaction with other components of the basal transcriptional machinery. Interestingly, COOH-terminal truncations of Mdm2 that retain p53 binding but fail to mediate its degradation are also stabilized themselves. Because Mdm2, like p53, is normally an unstable protein that is degraded through the proteasome, this result suggests a direct link between the regulation of Mdm2 and p53 stability.




This article has been cited by other articles:


Home page
EMBO Rep.Home page
X. Liu, Y. Tan, C. Zhang, Y. Zhang, L. Zhang, P. Ren, H. Deng, J. Luo, Y. Ke, and X. Du
NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2
EMBO Rep., March 1, 2016; 17(3): 349 - 366.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
T. Mikawa, T. Maruyama, K. Okamoto, H. Nakagama, M. E. Lleonart, T. Tsusaka, K. Hori, I. Murakami, T. Izumi, A. Takaori-Kondo, et al.
Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2
J. Cell Biol., March 3, 2014; 204(5): 729 - 745.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
R. Hu, G. Peng, H. Dai, E.-K. Breuer, K. Stemke-Hale, K. Li, A. M. Gonzalez-Angulo, G. B. Mills, and S.-Y. Lin
ZNF668 Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer
Cancer Res., October 15, 2011; 71(20): 6524 - 6534.
[Abstract] [Full Text] [PDF]


Home page
J Mol EndocrinolHome page
K. Kim, R. Burghardt, R. Barhoumi, S.-o. Lee, X. Liu, and S. Safe
MDM2 regulates estrogen receptor {alpha} and estrogen responsiveness in breast cancer cells
J. Mol. Endocrinol., February 15, 2011; 46(2): 67 - 79.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
D. M. Piscopo and P. W. Hinds
A Role for the Cyclin Box in the Ubiquitin-Mediated Degradation of Cyclin G1
Cancer Res., July 15, 2008; 68(14): 5581 - 5590.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
N. Lukashchuk and K. H. Vousden
Ubiquitination and Degradation of Mutant p53
Mol. Cell. Biol., December 1, 2007; 27(23): 8284 - 8295.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Sasaki, L. Nie, and C. G. Maki
MDM2 Binding Induces a Conformational Change in p53 That Is Opposed by Heat-shock Protein 90 and Precedes p53 Proteasomal Degradation
J. Biol. Chem., May 11, 2007; 282(19): 14626 - 14634.
[Abstract] [Full Text] [PDF]


Home page
EMBO Rep.Home page
A. S. Coutts, H. Boulahbel, A. Graham, and N. B. La Thangue
Mdm2 targets the p53 transcription cofactor JMY for degradation
EMBO Rep., January 1, 2007; 8(1): 84 - 90.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. D. Mayo, Y. R. Seo, M. W. Jackson, M. L. Smith, J. R. Guzman, C. K. Korgaonkar, and D. B. Donner
Phosphorylation of Human p53 at Serine 46 Determines Promoter Selection and whether Apoptosis Is Attenuated or Amplified
J. Biol. Chem., July 15, 2005; 280(28): 25953 - 25959.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C.-J. Chang, D. J. Freeman, and H. Wu
PTEN Regulates Mdm2 Expression through the P1 Promoter
J. Biol. Chem., July 9, 2004; 279(28): 29841 - 29848.
[Abstract] [Full Text] [PDF]


Home page
Mol Cancer ResHome page
M. E. Perry
Mdm2 in the Response to Radiation
Mol. Cancer Res., January 1, 2004; 2(1): 9 - 19.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
S. M. Mendrysa, M. K. McElwee, J. Michalowski, K. A. O'Leary, K. M. Young, and M. E. Perry
mdm2 Is Critical for Inhibition of p53 during Lymphopoiesis and the Response to Ionizing Irradiation
Mol. Cell. Biol., January 15, 2003; 23(2): 462 - 472.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. D. Mayo, J. E. Dixon, D. L. Durden, N. K. Tonks, and D. B. Donner
PTEN Protects p53 from Mdm2 and Sensitizes Cancer Cells to Chemotherapy
J. Biol. Chem., February 15, 2002; 277(7): 5484 - 5489.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
J. Dang, M.-L. Kuo, C. M. Eischen, L. Stepanova, C. J. Sherr, and M. F. Roussel
The RING Domain of Mdm2 Can Inhibit Cell Proliferation
Cancer Res., February 1, 2002; 62(4): 1222 - 1230.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
L. D. Mayo and D. B. Donner
A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus
PNAS, September 25, 2001; 98(20): 11598 - 11603.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Q. Zhu, J. Yao, G. Wani, M. A. Wani, and A. A. Wani
Mdm2 Mutant Defective in Binding p300 Promotes Ubiquitination but Not Degradation of p53: EVIDENCE FOR THE ROLE OF p300 IN INTEGRATING UBIQUITINATION AND PROTEOLYSIS
J. Biol. Chem., August 10, 2001; 276(32): 29695 - 29701.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
W.-T. Chang, J. J. Kang, K.-Y. Lee, K. Wei, E. Anderson, S. Gotmare, J. A. Ross, and G. D. Rosen
Triptolide and Chemotherapy Cooperate in Tumor Cell Apoptosis: A ROLE FOR THE p53 PATHWAY
J. Biol. Chem., January 19, 2001; 276(3): 2221 - 2227.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
D. B. S. Yap, J.-K. Hsieh, and X. Lu
Mdm2 Inhibits the Apoptotic Function of p53 Mainly by Targeting It for Degradation
J. Biol. Chem., November 24, 2000; 275(47): 37296 - 37302.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. Stad, Y. F. M. Ramos, N. Little, S. Grivell, J. Attema, A. J. van der Eb, and A. G. Jochemsen
Hdmx Stabilizes Mdm2 and p53
J. Biol. Chem., September 8, 2000; 275(36): 28039 - 28044.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
C. Wasylyk and B. Wasylyk
Defect in the p53-Mdm2 Autoregulatory Loop Resulting from Inactivation of TAFII250 in Cell Cycle Mutant tsBN462 Cells
Mol. Cell. Biol., August 1, 2000; 20(15): 5554 - 5570.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. O'Neill, A. J. Dwyer, Y. Ziv, D. W. Chan, S. P. Lees-Miller, R. H. Abraham, J. H. Lai, D. Hill, Y. Shiloh, L. C. Cantley, et al.
Utilization of Oriented Peptide Libraries to Identify Substrate Motifs Selected by ATM
J. Biol. Chem., July 28, 2000; 275(30): 22719 - 22727.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. D. Weber, M.-L. Kuo, B. Bothner, E. L. DiGiammarino, R. W. Kriwacki, M. F. Roussel, and C. J. Sherr
Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex
Mol. Cell. Biol., April 1, 2000; 20(7): 2517 - 2528.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
S. Fang, J. P. Jensen, R. L. Ludwig, K. H. Vousden, and A. M. Weissman
Mdm2 Is a RING Finger-dependent Ubiquitin Protein Ligase for Itself and p53
J. Biol. Chem., March 24, 2000; 275(12): 8945 - 8951.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. W. Jackson and S. J. Berberich
MdmX Protects p53 from Mdm2-Mediated Degradation
Mol. Cell. Biol., February 1, 2000; 20(3): 1001 - 1007.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
R. Ravi, B. Mookerjee, Z. M. Bhujwalla, C. H. Sutter, D. Artemov, Q. Zeng, L. E. Dillehay, A. Madan, G. L. Semenza, and A. Bedi
Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha
Genes & Dev., January 1, 2000; 14(1): 34 - 44.
[Abstract] [Full Text]


Home page
J Biol ChemHome page
D. A. Sharp, S. A. Kratowicz, M. J. Sank, and D. L. George
Stabilization of the MDM2 Oncoprotein by Interaction with the Structurally Related MDMX Protein
J. Biol. Chem., December 31, 1999; 274(53): 38189 - 38196.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
R. Khosravi, R. Maya, T. Gottlieb, M. Oren, Y. Shiloh, and D. Shkedy
Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage
PNAS, December 21, 1999; 96(26): 14973 - 14977.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
M. Oren
Regulation of the p53 Tumor Suppressor Protein
J. Biol. Chem., December 17, 1999; 274(51): 36031 - 36034.
[Full Text] [PDF]


Home page
J Biol ChemHome page
T. P. Moynihan, H. C. Ardley, U. Nuber, S. A. Rose, P. F. Jones, A. F. Markham, M. Scheffner, and P. A. Robinson
The Ubiquitin-conjugating Enzymes UbcH7 and UbcH8 Interact with RING Finger/IBR Motif-containing Domains of HHARI and H7-AP1
J. Biol. Chem., October 22, 1999; 274(43): 30963 - 30968.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. Zaika, N. Marchenko, and U. M. Moll
Cytoplasmically "Sequestered" Wild Type p53 Protein Is Resistant to Mdm2-mediated Degradation
J. Biol. Chem., September 24, 1999; 274(39): 27474 - 27480.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T. O'Neill, A. J. Dwyer, Y. Ziv, D. W. Chan, S. P. Lees-Miller, R. H. Abraham, J. H. Lai, D. Hill, Y. Shiloh, L. C. Cantley, et al.
Utilization of Oriented Peptide Libraries to Identify Substrate Motifs Selected by ATM
J. Biol. Chem., July 28, 2000; 275(30): 22719 - 22727.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. Stad, Y. F.M. Ramos, N. A. Little, S. Grivell, J. Attema, A. J. van de Eb, and A. G. Jochemsen
Hdmx stabilizes Mdm2 and p53
J. Biol. Chem., May 25, 2000; (2000) 3496200.
[Abstract]


Home page
J Biol ChemHome page
D. B. S. Yap, J.-K. Hsieh, and X. Lu
Mdm2 Inhibits the Apoptotic Function of p53 Mainly by Targeting It for Degradation
J. Biol. Chem., November 24, 2000; 275(47): 37296 - 37302.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
W.-T. Chang, J. J. Kang, K.-Y. Lee, K. Wei, E. Anderson, S. Gotmare, J. A. Ross, and G. D. Rosen
Triptolide and Chemotherapy Cooperate in Tumor Cell Apoptosis: A ROLE FOR THE p53 PATHWAY
J. Biol. Chem., January 19, 2001; 276(3): 2221 - 2227.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Q. Zhu, J. Yao, G. Wani, M. A. Wani, and A. A. Wani
Mdm2 Mutant Defective in Binding p300 Promotes Ubiquitination but Not Degradation of p53: EVIDENCE FOR THE ROLE OF p300 IN INTEGRATING UBIQUITINATION AND PROTEOLYSIS
J. Biol. Chem., August 10, 2001; 276(32): 29695 - 29701.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
L. D. Mayo and D. B. Donner
A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus
PNAS, September 25, 2001; 98(20): 11598 - 11603.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1999 by the American Association of Cancer Research.