CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Gamou, S.
Right arrow Articles by Shimizu, N.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Gamou, S.
Right arrow Articles by Shimizu, N.

Cell Growth & Differentiation, Vol 1, Issue 8 351-359, Copyright © 1990 by American Association of Cancer Research


ARTICLES

Regulation of the epidermal growth factor receptor gene expression in a morphological variant isolated from an epidermal growth factor receptor-deficient small cell lung carcinoma cell line

S Gamou, Y Shimosato and N Shimizu
Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.

Most cell lines derived from small cell lung carcinoma grow in an anchorage-independent manner; they neither possess epidermal growth factor binding activity nor express epidermal growth factor receptor (EGFR) mRNA. A variant AD320, which grew in an anchorage-dependent manner with altered morphology, was isolated from the small cell lung carcinoma cell line Lu134 by treatment with the demethylating agent 5-azacytidine. The analysis, using methylation-sensitive restriction enzymes, revealed that the methylation pattern was altered only in the structural region of the EGFR gene; EGFR mRNA and epidermal growth factor binding activity could be detected in the variant. In addition, drastic changes in gene expression including a decrease of creatine kinase B mRNA and an increase of c-myc mRNA were observed. The EGFR in the variant appeared to be an active part of the transmembrane signaling machinery since c-fos and c-jun mRNA accumulated after epidermal growth factor treatment, followed by EGFR and c-myc mRNA accumulation. A potent tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, also induced EGFR mRNA. Thus, the inducible regulatory mechanism for the EGFR gene was activated in the variant even though the EGFR gene was constitutively expressed.





HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1990 by the American Association of Cancer Research.