CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Freytag, S. O.
Right arrow Articles by Lee, W. M.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Freytag, S. O.
Right arrow Articles by Lee, W. M.

Cell Growth & Differentiation, Vol 1, Issue 7 339-343, Copyright © 1990 by American Association of Cancer Research


ARTICLES

Definition of the activities and properties of c-myc required to inhibit cell differentiation

SO Freytag, CV Dang and WM Lee
Molecular Biology Research Program, Henry Ford Hospital, Detroit, Michigan 48202.

Previous studies have shown that high levels of c-myc inhibit cell differentiation. The goal of this study was to define the activities and properties of c-myc that are necessary and/or sufficient for this effect. A series of mutant human c-myc genes were stably transfected into the 3T3-L1 preadipocyte cell line and assayed for their capacity to block differentiation into adipocytes. Results of the differentiation tests were then correlated with other known activities and properties of the mutants. Our studies show that the ability of c-myc to inhibit 3T3-L1 cell differentiation requires its transforming activity, and the ability of c-myc to bind sequence-nonspecific DNA and to form oligomers is not sufficient for this effect. Thus, the ability of c-myc to inhibit cell differentiation may be central to its role as a transforming oncogene.


This article has been cited by other articles:


Home page
Molecular Cancer TherapeuticsHome page
D. Soodgupta, D. Pan, G. Cui, A. Senpan, X. Yang, L. Lu, K. N. Weilbaecher, E. V. Prochownik, G. M. Lanza, and M. H. Tomasson
Small Molecule MYC Inhibitor Conjugated to Integrin-Targeted Nanoparticles Extends Survival in a Mouse Model of Disseminated Multiple Myeloma
Mol. Cancer Ther., June 1, 2015; 14(6): 1286 - 1294.
[Abstract] [Full Text] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
C. V. Dang
Therapeutic Targeting of Myc-Reprogrammed Cancer Cell Metabolism
Cold Spring Harb Symp Quant Biol, January 1, 2011; 76(0): 369 - 374.
[Abstract] [Full Text] [PDF]


Home page
JEMHome page
L. Jones, G. Wei, S. Sevcikova, V. Phan, S. Jain, A. Shieh, J. C. Y. Wong, M. Li, J. Dubansky, M. L. Maunakea, et al.
Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia
J. Exp. Med., November 22, 2010; 207(12): 2581 - 2594.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. C. Acosta, N. Ferrandiz, G. Bretones, V. Torrano, R. Blanco, C. Richard, B. O'Connell, J. Sedivy, M. D. Delgado, and J. Leon
Myc Inhibits p27-Induced Erythroid Differentiation of Leukemia Cells by Repressing Erythroid Master Genes without Reversing p27-Mediated Cell Cycle Arrest
Mol. Cell. Biol., December 15, 2008; 28(24): 7286 - 7295.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
V. H. Cowling, S. Chandriani, M. L. Whitfield, and M. D. Cole
A Conserved Myc Protein Domain, MBIV, Regulates DNA Binding, Apoptosis, Transformation, and G2 Arrest
Mol. Cell. Biol., June 1, 2006; 26(11): 4226 - 4239.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
J. A. Nilsson, L. M. Nilsson, U. Keller, Y. Yokota, K. Boyd, and J. L. Cleveland
Id2 Is Dispensable for Myc-Induced Lymphomagenesis
Cancer Res., October 15, 2004; 64(20): 7296 - 7301.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
Y. Otsuki, M. Tanaka, T. Kamo, C. Kitanaka, Y. Kuchino, and H. Sugimura
Guanine Nucleotide Exchange Factor, Tiam1, Directly Binds to c-Myc and Interferes with c-Myc-mediated Apoptosis in Rat-1 Fibroblasts
J. Biol. Chem., February 14, 2003; 278(7): 5132 - 5140.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. G. Harris, E. White, E. S. Phillips, and K. A. Lillycrop
The Expression of the Developmentally Regulated Proto-oncogenePax-3 Is Modulated by N-Myc
J. Biol. Chem., September 20, 2002; 277(38): 34815 - 34825.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. A. Nikiforov, S. Chandriani, J. Park, I. Kotenko, D. Matheos, A. Johnsson, S. B. McMahon, and M. D. Cole
TRRAP-Dependent and TRRAP-Independent Transcriptional Activation by Myc Family Oncoproteins
Mol. Cell. Biol., July 15, 2002; 22(14): 5054 - 5063.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. Park, M. A. Wood, and M. D. Cole
BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation
Mol. Cell. Biol., March 1, 2002; 22(5): 1307 - 1316.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
L. Facchini and L. Z. Penn
The molecular role of Myc in growth and transformation: recent discoveries lead to new insights
FASEB J, June 1, 1998; 12(9): 633 - 651.
[Abstract] [Full Text]


Home page
Mol. Pharmacol.Home page
C. Shayo, C. Davio, A. Brodsky, A. G. Mladovan, B. L. Legnazzi, E. Rivera, and A. Baldi
Histamine Modulates the Expression of c-fosthrough Cyclic AMP Production via the H2 Receptor in the Human Promonocytic Cell Line U937
Mol. Pharmacol., June 1, 1997; 51(6): 983 - 990.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
T.-Y. Chou, G. W. Hart, and C. V. Dang
c-Myc Is Glycosylated at Threonine 58, a Known Phosphorylation Site and a Mutational Hot Spot in Lymphomas
J. Biol. Chem., August 11, 1995; 270(32): 18961 - 18965.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
D E Ayer and R N Eisenman
A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation.
Genes & Dev., November 1, 1993; 7(11): 2110 - 2119.
[Abstract] [PDF]


Home page
ScienceHome page
S. O. Freytag and T. J. Geddes
Reciprocal Regulation of Adipogenesis by Myc and C/EBPagr
Science, April 17, 1992; 256(5055): 379 - 382.
[Abstract] [PDF]


Home page
Genes Dev.Home page
S J Berberich and M D Cole
Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers.
Genes & Dev., February 1, 1992; 6(2): 166 - 176.
[Abstract] [PDF]


Home page
ScienceHome page
E. Blackwood and R. Eisenman
Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc
Science, March 8, 1991; 251(4998): 1211 - 1217.
[Abstract] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
E.M. Blackwood, B. Luscher, L. Kretzner, and R.N. Eisenman
The Myc:Max Protein Complex and Cell Growth Regulation
Cold Spring Harb Symp Quant Biol, January 1, 1991; 56(0): 109 - 117.
[Abstract] [PDF]


Home page
Genes Dev.Home page
B Luscher and R N Eisenman
New light on Myc and Myb. Part I. Myc.
Genes & Dev., December 1, 1990; 4(12a): 2025 - 2035.
[PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1990 by the American Association of Cancer Research.