CG&D
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Hinds, P. W.
Right arrow Articles by Levine, A. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Hinds, P. W.
Right arrow Articles by Levine, A. J.

Cell Growth & Differentiation, Vol 1, Issue 12 571-580, Copyright © 1990 by American Association of Cancer Research


ARTICLES

Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes

PW Hinds, CA Finlay, RS Quartin, SJ Baker, ER Fearon, B Vogelstein and AJ Levine
Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08544-1014.

The majority of the p53 genes derived from human colorectal carcinomas contain point mutations. A significant number of these mutations occur in or around amino acids 143, 175, 273, or 281. Experiments presented here demonstrate for the first time that p53 DNA clones containing any one of these mutations cooperate with the activated ras oncogene to transform primary rat embryo cells in culture. These transformed cells produce elevated levels of the human p53 protein, which has extended half-lives (1.5-7 h), as compared to the wild-type human p53 protein (20-30 min). The p53 mutant with an alteration at residue 175 (p53-175H) binds tightly to the cellular heat shock protein, hsc70. In contrast, the p53 mutants possessing mutations at either residue 273 or 281 (p53-273H/281G) do not bind detectably to this heat shock protein and generally are less efficient at forming transformed foci in culture. The transformed cell lines are tumorigenic in nude mice. Thus, two classes of p53 mutant proteins can be distinguished: p53-175H, which cooperates with ras efficiently and binds to hsc70, and p53-273H/281G, which has a reduced efficiency of transformed foci formation and does not bind hsc70. This demonstrates that complex formation between mutant p53 and hsc70 is not required for p53-mediated transformation, but rather it facilitates this function, perhaps by ensuring sequestration of the endogenous wild-type p53 protein. The positive effect on cell proliferation by these mutant p53 proteins is consistent with a role for activated p53 mutants in the genesis of colorectal carcinomas.


This article has been cited by other articles:


Home page
Cold Spring Harb Perspect MedHome page
J. D. Oliner, A. Y. Saiki, and S. Caenepeel
The Role of MDM2 Amplification and Overexpression in Tumorigenesis
Cold Spring Harb Perspect Med, June 1, 2016; 6(6): a026336 - a026336.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
L. Chen, F. Rashid, A. Shah, H. M. Awan, M. Wu, A. Liu, J. Wang, T. Zhu, Z. Luo, and G. Shan
The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation
PNAS, August 11, 2015; 112(32): 10002 - 10007.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
P. X. Lim, D. R. Patel, K. E. Poisson, M. Basuita, C. Tsai, A. M. Lyndaker, B.-J. Hwang, A.-L. Lu, and R. S. Weiss
Genome Protection by the 9-1-1 Complex Subunit HUS1 Requires Clamp Formation, DNA Contacts, and ATR Signaling-independent Effector Functions
J. Biol. Chem., June 12, 2015; 290(24): 14826 - 14840.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
M. Avital-Shacham, R. Sharf, and T. Kleinberger
NTPDASE4 Gene Products Cooperate with the Adenovirus E4orf4 Protein through PP2A-Dependent and -Independent Mechanisms and Contribute to Induction of Cell Death
J. Virol., June 1, 2014; 88(11): 6318 - 6328.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
H. Vakifahmetoglu-Norberg, M. Kim, H.-g. Xia, M. P. Iwanicki, D. Ofengeim, J. L. Coloff, L. Pan, T. A. Ince, G. Kroemer, J. S. Brugge, et al.
Chaperone-mediated autophagy degrades mutant p53
Genes & Dev., August 1, 2013; 27(15): 1718 - 1730.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
W. A. Freed-Pastor and C. Prives
Mutant p53: one name, many proteins
Genes & Dev., June 15, 2012; 26(12): 1268 - 1286.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H. Yamaguchi, N. T. Woods, L. G. Piluso, H.-H. Lee, J. Chen, K. N. Bhalla, A. Monteiro, X. Liu, M.-C. Hung, and H.-G. Wang
p53 Acetylation Is Crucial for Its Transcription-independent Proapoptotic Functions
J. Biol. Chem., April 24, 2009; 284(17): 11171 - 11183.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
H. Ben-Israel, R. Sharf, G. Rechavi, and T. Kleinberger
Adenovirus E4orf4 Protein Downregulates MYC Expression through Interaction with the PP2A-B55 Subunit
J. Virol., October 1, 2008; 82(19): 9381 - 9388.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
D. M. Piscopo and P. W. Hinds
A Role for the Cyclin Box in the Ubiquitin-Mediated Degradation of Cyclin G1
Cancer Res., July 15, 2008; 68(14): 5581 - 5590.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
C. J. Matheny, M. E. Speck, P. R. Cushing, Y. Zhou, T. Corpora, M. Regan, M. Newman, L. Roudaia, C. L. Speck, T.-L. Gu, et al.
Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles
EMBO J., February 21, 2007; 26(4): 1163 - 1175.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
C. Esser, M. Scheffner, and J. Hohfeld
The Chaperone-associated Ubiquitin Ligase CHIP Is Able to Target p53 for Proteasomal Degradation
J. Biol. Chem., July 22, 2005; 280(29): 27443 - 27448.
[Abstract] [Full Text] [PDF]


Home page
J. Immunol.Home page
L. A. Mosquera, K. F. Card, S. A. Price-Schiavi, H. J. Belmont, B. Liu, J. Builes, X. Zhu, P.-A. Chavaillaz, H.-i. Lee, J.-a. Jiao, et al.
In Vitro and In Vivo Characterization of a Novel Antibody-Like Single-Chain TCR Human IgG1 Fusion Protein
J. Immunol., April 1, 2005; 174(7): 4381 - 4388.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
H. Kondoh, M. E. Lleonart, J. Gil, J. Wang, P. Degan, G. Peters, D. Martinez, A. Carnero, and D. Beach
Glycolytic Enzymes Can Modulate Cellular Life Span
Cancer Res., January 1, 2005; 65(1): 177 - 185.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
M. J. Scian, K. E. R. Stagliano, M. A. Ellis, S. Hassan, M. Bowman, M. F. Miles, S. P. Deb, and S. Deb
Modulation of Gene Expression by Tumor-Derived p53 Mutants
Cancer Res., October 15, 2004; 64(20): 7447 - 7454.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
L. A. Scott, J. K. Vass, E. K. Parkinson, D. A. F. Gillespie, J. N. Winnie, and B. W. Ozanne
Invasion of Normal Human Fibroblasts Induced by v-Fos Is Independent of Proliferation, Immortalization, and the Tumor Suppressors p16INK4a and p53
Mol. Cell. Biol., February 15, 2004; 24(4): 1540 - 1559.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
K. Nakade, H. Zheng, G. Ganguli, G. Buchwalter, C. Gross, and B. Wasylyk
The Tumor Suppressor p53 Inhibits Net, an Effector of Ras/Extracellular Signal-Regulated Kinase Signaling
Mol. Cell. Biol., February 1, 2004; 24(3): 1132 - 1142.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
A. C. S. Chun and D.-Y. Jin
Transcriptional Regulation of Mitotic Checkpoint Gene MAD1 by p53
J. Biol. Chem., September 26, 2003; 278(39): 37439 - 37450.
[Abstract] [Full Text] [PDF]


Home page
J. Neurosci.Home page
Y. Zhang, Y. Hong, Y. Bounhar, M. Blacker, X. Roucou, O. Tounekti, E. Vereker, W. J. Bowers, H. J. Federoff, C. G. Goodyer, et al.
p75 Neurotrophin Receptor Protects Primary Cultures of Human Neurons against Extracellular Amyloid {beta} Peptide Cytotoxicity
J. Neurosci., August 13, 2003; 23(19): 7385 - 7394.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
O. Petrenko, G. Fingerle-Rowson, T. Peng, R. A. Mitchell, and C. N. Metz
Macrophage Migration Inhibitory Factor Deficiency Is Associated with Altered Cell Growth and Reduced Susceptibility to Ras-mediated Transformation
J. Biol. Chem., March 28, 2003; 278(13): 11078 - 11085.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
N. Akyuz, G. S. Boehden, S. Susse, A. Rimek, U. Preuss, K.-H. Scheidtmann, and L. Wiesmuller
DNA Substrate Dependence of p53-Mediated Regulation of Double-Strand Break Repair
Mol. Cell. Biol., September 1, 2002; 22(17): 6306 - 6317.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
J. Karlseder, A. Smogorzewska, and T. de Lange
Senescence Induced by Altered Telomere State, Not Telomere Loss
Science, March 29, 2002; 295(5564): 2446 - 2449.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
Y. Zhang, R. McLaughlin, C. Goodyer, and A. LeBlanc
Selective cytotoxicity of intracellular amyloid {beta} peptide1-42 through p53 and Bax in cultured primary human neurons
J. Cell Biol., February 4, 2002; 156(3): 519 - 529.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
R. C. Ribeiro, F. Sandrini, B. Figueiredo, G. P. Zambetti, E. Michalkiewicz, A. R. Lafferty, L. DeLacerda, M. Rabin, C. Cadwell, G. Sampaio, et al.
An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma
PNAS, July 31, 2001; 98(16): 9330 - 9335.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
F. Martelli, T. Hamilton, D. P. Silver, N. E. Sharpless, N. Bardeesy, M. Rokas, R. A. DePinho, D. M. Livingston, and S. R. Grossman
p19ARF targets certain E2F species for degradation
PNAS, April 10, 2001; 98(8): 4455 - 4460.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
A. Livne, R. Shtrichman, and T. Kleinberger
Caspase Activation by Adenovirus E4orf4 Protein Is Cell Line Specific and Is Mediated by the Death Receptor Pathway
J. Virol., January 15, 2001; 75(2): 789 - 798.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
S. Sengupta, J.-L. Vonesch, C. Waltzinger, H. Zheng, and B. Wasylyk
Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells
EMBO J., November 15, 2000; 19(22): 6051 - 6064.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
T. Mitsudomi, N. Hamajima, M. Ogawa, and T. Takahashi
Prognostic Significance of p53 Alterations in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis
Clin. Cancer Res., October 1, 2000; 6(10): 4055 - 4063.
[Abstract] [Full Text]


Home page
Mol. Cell. Biol.Home page
C. Wasylyk and B. Wasylyk
Defect in the p53-Mdm2 Autoregulatory Loop Resulting from Inactivation of TAFII250 in Cell Cycle Mutant tsBN462 Cells
Mol. Cell. Biol., August 1, 2000; 20(15): 5554 - 5570.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. W. Lee, L. Fang, M. Igarashi, T. Ouchi, K. P. Lu, and S. A. Aaronson
Sustained activation of Ras/Raf/mitogen-activated protein kinase cascade by the tumor suppressor p53
PNAS, July 18, 2000; 97(15): 8302 - 8305.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
G. Liu, T. J. McDonnell, R. Montes de Oca Luna, M. Kapoor, B. Mims, A. K. El-Naggar, and G. Lozano
High metastatic potential in mice inheriting a targeted p53 missense mutation
PNAS, April 11, 2000; 97(8): 4174 - 4179.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J. D. Weber, M.-L. Kuo, B. Bothner, E. L. DiGiammarino, R. W. Kriwacki, M. F. Roussel, and C. J. Sherr
Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex
Mol. Cell. Biol., April 1, 2000; 20(7): 2517 - 2528.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
V. Skaug, D. Ryberg, E. H. K. M. O. Arab, L. Stangeland, A. O. Myking, and A. Haugen
p53 Mutations in Defined Structural and Functional Domains Are Related to Poor Clinical Outcome in Non-Small Cell Lung Cancer Patients
Clin. Cancer Res., March 1, 2000; 6(3): 1031 - 1037.
[Abstract] [Full Text]


Home page
Mol. Cell. Biol.Home page
Z. Gu, C. Flemington, T. Chittenden, and G. P. Zambetti
ei24, a p53 Response Gene Involved in Growth Suppression and Apoptosis
Mol. Cell. Biol., January 1, 2000; 20(1): 233 - 241.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
R. Shtrichman, R. Sharf, H. Barr, T. Dobner, and T. Kleinberger
Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A
PNAS, August 31, 1999; 96(18): 10080 - 10085.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
E. Saller, E. Tom, M. Brunori, M. Otter, A. Estreicher, D. H. Mack, and R. Iggo
Increased apoptosis induction by 121F mutant p53
EMBO J., August 16, 1999; 18(16): 4424 - 4437.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
A. S. Tam, J. F. Foley, T. R. Devereux, R. R. Maronpot, and T. E. Massey
High Frequency and Heterogeneous Distribution of p53 Mutations in Aflatoxin B1-induced Mouse Lung Tumors
Cancer Res., August 1, 1999; 59(15): 3634 - 3640.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
L. J. Saucedo, C. D. Myers, and M. E. Perry
Multiple Murine Double Minute Gene 2 (MDM2) Proteins Are Induced by Ultraviolet Light
J. Biol. Chem., March 19, 1999; 274(12): 8161 - 8168.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
J.-S. Qi, Y. Yuan, V. Desai-Yajnik, and H. H. Samuels
Regulation of the mdm2 Oncogene by Thyroid Hormone Receptor
Mol. Cell. Biol., January 1, 1999; 19(1): 864 - 872.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
P. Sun, P. Dong, K. Dai, G. J. Hannon, and D. Beach
p53-Independent Role of MDM2 in TGF-{beta}1 Resistance
Science, December 18, 1998; 282(5397): 2270 - 2272.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
H.-y. Tang, K. Zhao, J. F. Pizzolato, M. Fonarev, J. C. Langer, and J. J. Manfredi
Constitutive Expression of the Cyclin-dependent Kinase Inhibitor p21 Is Transcriptionally Regulated by the Tumor Suppressor Protein p53
J. Biol. Chem., October 30, 1998; 273(44): 29156 - 29163.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. N. Rodin and A. S. Rodin
Strand asymmetry of CpG transitions as indicator of G1 phase-dependent origin of multiple tumorigenic p53 mutations in stem cells
PNAS, September 29, 1998; 95(20): 11927 - 11932.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
T. Kamijo, J. D. Weber, G. Zambetti, F. Zindy, M. F. Roussel, and C. J. Sherr
Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2
PNAS, July 7, 1998; 95(14): 8292 - 8297.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
M. W. Frazier, X. He, J. Wang, Z. Gu, J. L. Cleveland, and G. P. Zambetti
Activation of c-myc Gene Expression by Tumor-Derived p53 Mutants Requires a Discrete C-Terminal Domain
Mol. Cell. Biol., July 1, 1998; 18(7): 3735 - 3743.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
R. V. Gopalkrishnan, E. W.- F. Lam, and C. Kedinger
The p53 Tumor Suppressor Inhibits Transcription of the TATA-less Mouse DP1 Promoter
J. Biol. Chem., May 1, 1998; 273(18): 10972 - 10978.
[Abstract] [Full Text] [PDF]


Home page
EMBO J.Home page
D. R. Brown, C. A. Thomas, and S. Palit Deb
The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis
EMBO J., May 1, 1998; 17(9): 2513 - 2525.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
R. Shtrichman and T. Kleinberger
Adenovirus Type 5 E4 Open Reading Frame 4 Protein Induces Apoptosis in Transformed Cells
J. Virol., April 1, 1998; 72(4): 2975 - 2982.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
L. Whitesell, P. D. Sutphin, E. J. Pulcini, J. D. Martinez, and P. H. Cook
The Physical Association of Multiple Molecular Chaperone Proteins with Mutant p53 Is Altered by Geldanamycin, an hsp90-Binding Agent
Mol. Cell. Biol., March 1, 1998; 18(3): 1517 - 1524.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. Biol.Home page
E. R. Fernandes, J. Y. Zhang, and R. J. Rooney
Adenovirus E1A-Regulated Transcription Factor p120E4F Inhibits Cell Growth and Induces the Stabilization of the cdk Inhibitor p21WAF1
Mol. Cell. Biol., January 1, 1998; 18(1): 459 - 467.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
G. Teoh, M. Urashima, A. Ogata, D. Chauhan, J. A. DeCaprio, S. P. Treon, R. L. Schlossman, and K. C. Anderson
MDM2 Protein Overexpression Promotes Proliferation and Survival of Multiple Myeloma Cells
Blood, September 1, 1997; 90(5): 1982 - 1992.
[Abstract] [Full Text] [PDF]


Home page
JEMHome page
M. Theobald, J. Biggs, J. Hernandez, J. Lustgarten, C. Labadie, and L. A. Sherman
Tolerance to p53 by A2.1-restricted Cytotoxic T Lymphocytes
J. Exp. Med., March 3, 1997; 185(5): 833 - 842.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
F. Ronca, S.-L. Chan, and V. C. Yu
1-(5-Isoquinolinesulfonyl)-2-methylpiperazine Induces Apoptosis in Human Neuroblastoma Cells, SH-SY5Y, through a p53-dependent Pathway
J. Biol. Chem., February 14, 1997; 272(7): 4252 - 4260.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
K. K. Walker and A. J. Levine
Identification of a novel p53 functional domain that is necessary for efficient growth suppression
PNAS, December 24, 1996; 93(26): 15335 - 15340.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
P. Friedlander, Y. Legros, T. Soussi, and C. Prives
Regulation of Mutant p53 Temperature-sensitive DNA Binding
J. Biol. Chem., October 11, 1996; 271(41): 25468 - 25478.
[Abstract] [Full Text] [PDF]


Home page
J Biol ChemHome page
X. Li and P. Coffino
Identification of a Region of p53 That Confers Lability
J. Biol. Chem., February 23, 1996; 271(8): 4447 - 4451.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
Y Haupt, S Rowan, E Shaulian, K H Vousden, and M Oren
Induction of apoptosis in HeLa cells by trans-activation-deficient p53.
Genes & Dev., September 1, 1995; 9(17): 2170 - 2183.
[Abstract] [PDF]


Home page
ScienceHome page
P. Jeffrey, S. Gorina, and N. Pavletich
Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms
Science, March 10, 1995; 267(5203): 1498 - 1502.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
M E Ewen, C J Oliver, H K Sluss, S J Miller, and D S Peeper
p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest.
Genes & Dev., January 15, 1995; 9(2): 204 - 217.
[Abstract] [PDF]


Home page
ScienceHome page
Y Cho, S Gorina, P. Jeffrey, and N. Pavletich
Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
Science, July 15, 1994; 265(5170): 346 - 355.
[Abstract] [PDF]


Home page
Genes Dev.Home page
J Lin, J Chen, B Elenbaas, and A J Levine
Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein.
Genes & Dev., May 15, 1994; 8(10): 1235 - 1246.
[Abstract] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
J. Lin, X. Wu, J. Chen, A. Chang, and A.J. Levine
Functions of the p53 Protein in Growth Regulation and Tumor Suppression
Cold Spring Harb Symp Quant Biol, January 1, 1994; 59(0): 215 - 223.
[Abstract] [PDF]


Home page
Genes Dev.Home page
J Bargonetti, J J Manfredi, X Chen, D R Marshak, and C Prives
A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein.
Genes & Dev., December 1, 1993; 7(12b): 2565 - 2574.
[Abstract] [PDF]


Home page
Genes Dev.Home page
X Wu, J H Bayle, D Olson, and A J Levine
The p53-mdm-2 autoregulatory feedback loop.
Genes & Dev., July 1, 1993; 7(7a): 1126 - 1132.
[Abstract] [PDF]


Home page
ScienceHome page
S. Agoff, J Hou, D. Linzer, and B Wu
Regulation of the human hsp70 promoter by p53
Science, January 1, 1993; 259(5091): 84 - 87.
[Abstract] [PDF]


Home page
Genes Dev.Home page
J Bargonetti, I Reynisdottir, P N Friedman, and C Prives
Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53.
Genes & Dev., October 1, 1992; 6(10): 1886 - 1898.
[Abstract] [PDF]


Home page
Genes Dev.Home page
G P Zambetti, J Bargonetti, K Walker, C Prives, and A J Levine
Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element.
Genes & Dev., July 1, 1992; 6(7): 1143 - 1152.
[Abstract] [PDF]


Home page
ScienceHome page
K. Chin, K Ueda, I Pastan, and M. Gottesman
Modulation of activity of the promoter of the human MDR1 gene by Ras and p53
Science, January 24, 1992; 255(5043): 459 - 462.
[Abstract] [PDF]


Home page
Genes Dev.Home page
D M Harvey and A J Levine
p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts.
Genes & Dev., December 1, 1991; 5(12b): 2375 - 2385.
[Abstract] [PDF]


Home page
Genes Dev.Home page
Y Ben-David, E B Giddens, K Letwin, and A Bernstein
Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1.
Genes & Dev., June 1, 1991; 5(6): 908 - 918.
[Abstract] [PDF]


Home page
Cold Spring Harb Symp Quant BiolHome page
G.P. Zambetti, R.S. Quartin, J. Martinez, I. Georgoff, J. Momand, D. Dittmer, C.A. Finlay, and A.J. Levine
Regulation of Transformation and the Cell Cycle by p53
Cold Spring Harb Symp Quant Biol, January 1, 1991; 56(0): 219 - 225.
[Abstract] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
F. Martelli, T. Hamilton, D. P. Silver, N. E. Sharpless, N. Bardeesy, M. Rokas, R. A. DePinho, D. M. Livingston, and S. R. Grossman
p19ARF targets certain E2F species for degradation
PNAS, April 10, 2001; 98(8): 4455 - 4460.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. W. Lee, L. Fang, M. Igarashi, T. Ouchi, K. P. Lu, and S. A. Aaronson
Sustained activation of Ras/Raf/mitogen-activated protein kinase cascade by the tumor suppressor p53
PNAS, July 18, 2000; 97(15): 8302 - 8305.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
Y. Zhang, R. McLaughlin, C. Goodyer, and A. LeBlanc
Selective cytotoxicity of intracellular amyloid {beta} peptide1-42 through p53 and Bax in cultured primary human neurons
J. Cell Biol., February 4, 2002; 156(3): 519 - 529.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Cancer Research Clinical Cancer Research
Cancer Epidemiology Biomarkers & Prevention Molecular Cancer Therapeutics
Molecular Cancer Research Cell Growth & Differentiation
Copyright © 1990 by the American Association of Cancer Research.